下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE3高三总复习第五十一讲椭圆姓名.●网络体系总览●考点目标定位1.掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.能够根据具体条件利用各种不同的工具画椭圆、双曲线、抛物线的图形,了解它们在实际问题中的初步应用.5.结合所学内容,进一步加强对运动变化和对立统一等观点的认识.●复习方略指南本章主要内容有椭圆、双曲线、抛物线的定义,标准方程,简单几何性质.它们作为研究曲线和方程的典型问题,成了解析几何的主要内容,在日常生活、生产实践和科学技术上有着广泛的应用.因此在高考中,圆锥曲线成为命题的热点之一.分析近几年高考试题,有下面几个显著特点:1.注重双基保持稳定圆锥曲线在题型、题量、难度等方面风格独特,每年的试卷中客观题2至3道,主观题1道,分值占全卷的15%左右,“难、中、易”层次分明,既有基础题,又有能力题.2.全面考查重点突出试题中,圆锥曲线的内容几乎全部涉及,考查的知识点约占圆锥曲线总知识点的四分之三,通过知识的重新组合,考查学生系统掌握课程知识的内在联系,重点仍在直线与圆锥曲线的位置关系上.3.考查能力探究创新试题具有一定的综合性,重点考查学生画图、数形结合、等价转换、分类讨论、逻辑推理、合理运算以及综合运用知识的能力.在今后的高考中,圆锥曲线仍将考查圆锥曲线的概念和性质、求曲线方程、直线和圆锥曲线的位置关系、解析几何中的定值最值问题.其中直线和圆锥曲线的位置关系仍是命题的热点,解析几何中的定值及最值问题也会有所加强.圆锥曲线内容的“应用性问题”和“探索性问题”将会出现在今后的高考中.学好本章的关键在于正确理解和掌握由曲线求方程和由方程讨论曲线的性质这两个问题.为此建议在学习中做到:1.搞清概念(对概念定义应“咬文嚼字”);2.熟悉曲线(会“速写”出符合题目数量特征要求的曲线);3.熟练运用代数、三角、几何、向量的知识;4.处理问题时要在“大处着眼”(即在整体上把握问题的综合信息和处理问题的数学思想)“小处着手”(即在细节上能熟练运用各种数学知识和方法).椭圆1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:,()3.椭圆的性质:由椭圆方程()(1)范围:,,椭圆落在组成的矩形中.(2)对称性:图象关于轴对称.图象关于轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.轴、轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点:,加两焦点共有六个特殊点.叫椭圆的长轴,叫椭圆的短轴.长分别为分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率:椭圆焦距与长轴长之比椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例4椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆其中定点叫做焦点,定直线叫做准线,常数就是离心率+=⑴(2)5.椭圆的准线方程对于,相对于左焦点对应着左准线;相对于右焦点对应着右准线对于,相对于下焦点对应着下准线;相对于上焦点对应着上准线准线的位置关系:二、基础演练1.椭圆的长轴位于轴,长轴长等于;短轴位于轴,短轴长等于;焦点在轴上,焦点坐标分别是和;离心率;准线方程是;焦点到相应准线的距离(焦准距)等于;左顶点坐标是下顶点坐标是;椭圆上的点的横坐标的范围是纵坐标的范围是,的取值范围是。2.已知椭圆上一点。⑴若点的坐标是,则点与椭圆两个焦点的距离分别是、;⑵若点到一个焦点的距离是3,则它到相应准线的距离等于,到另一个焦点的距离等于。3.椭圆的焦点坐标是,离心率是________,准线方程是_________.4.已知F1、F2是椭圆的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为()A.8B.16C.25D.325.椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6C.4D.106.已知椭圆方程为,那么它的焦距是()A.6B.3C.3D.7.如果方程表示焦点在轴上的椭圆,那么实数k的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)8.设为定点,||=6,动点M满足,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段9.已知方程+=1,表示焦点在y轴上的椭圆,则m的取值范围为.10.已知椭圆的两个焦点坐标是F1(-2,0),F2(2,0),并且经过点P(),则椭圆标准方程是_____11.过点A(-1,-2)且与椭圆的两个焦点相同的椭圆标准方程是____12.过点P(,-2),Q(-2,1)两点的椭圆标准方程是______13.若椭圆的离心率是,则k的值等于.14.已知△ABC的顶点B、C在椭圆EQ\f(x\S(2),3)+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是.15.F1、F2分别为椭圆+=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是16.设M是椭圆上一点,F1、F2为焦点,,则在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(A)(B)(C)(D)设是右焦点为的椭圆上三个不同的点,则“成等差数列”是“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论