摄像头模组行业发展趋势分析_第1页
摄像头模组行业发展趋势分析_第2页
摄像头模组行业发展趋势分析_第3页
摄像头模组行业发展趋势分析_第4页
摄像头模组行业发展趋势分析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摄像头模组行业发展趋势分析

摄像头模组行业发展趋势(一))中国摄像头模组产业链快速崛起随着中国经济的快速发展,中国已经成为全球最大的消费电子市场,而摄像头模组作为手机等消费电子的主要传感器,迎来了快速崛起的发展机遇。截至2020年末,全球手机摄像头模组的前三大供应商分别为欧菲光、舜宇光学和丘钛微,均为中国企业。摄像头模组同时作为汽车电子、IoT等智能终端的核心传感器,国内智能汽车、IoT领域庞大的市场需求将会进一步带动摄像头模组的快速发展和更新迭代,进一步加快摄像头模组的技术和工艺创新,推动境内摄像头模组产业链的快速崛起。(二)摄像头模组行业上游原材料的趋势逐渐加强在摄像头模组的CMOS图像传感器芯片、光学镜头和音圈马达等主要原材料行业中,境内厂商的市场占有率逐步提高,进口替代趋势明显。高端CMOS图像传感器芯片依旧为日韩厂商主导,但是以豪威科技、格科微为代表的境内厂商与日韩厂商的差距逐渐减小,豪威科技已经实现6,400万像素的CMOS图像传感器芯片的量产,格科微在1,300万像素及以下的CMOS图像传感器芯片市场中占据重要地位。在光学镜头领域,根据TSR预测,舜宇光学在2020年位列光学镜头领域市场份额第一位,与中国台湾地区厂商大立光在超高端光学镜头的差距进一步缩小。在音圈马达领域,TSR数据显示,2019年市场排名前三的厂商分别为:阿尔卑斯、TDK和三美集团,均为日本厂商,但国内主要生产厂商皓泽电子和中蓝电子的市场份额占比从2017年的3.8%、4.4%分别增长至2019年的10.5%、9.5%,预计2020年市场份额将会进一步提高。(三)摄像头模组行业应用场景愈加广泛随着5G通信,智能驾驶,3DSensing等新一代技术的不断商业化,摄像头模组的应用场景也在逐渐增加。智能手机等消费电子行业是摄像头模组的传统应用场景,消费者对拍摄效果优质化、多样化的需求推动着手机摄像头配置、技术的快速发展,也推动着手机摄像头市场规模的不断增长。汽车电子,物联网正在成为摄像头模组的重要应用场景。随着智能驾驶、车联网技术的逐渐普及,智能汽车拥有广阔的市场需求。摄像头作为获取驾驶信息、提供交流方式的重要通道,单辆汽车所需摄像头的数量会快速增加,以满足自动驾驶和休闲娱乐的需求,因此车载摄像头的需求将会不断增长。物联网应用场景众多,如智能家居、智能城市、智能农业等,其中摄像头模组作为光学成像的重要传感器,主要应用在机器视觉、高清视频等领域。例如在扫地机器人、冰箱等智能家居中,摄像头模组可以起到3D感测、周围环境判断等功能,在无人机等智能机器人中可以识别障碍物,拍照摄影等。(四)摄像头模组行业种类不断丰富随着消费者需求的多样化和模组厂商工艺技术的创新,摄像头的功能和种类正在不断丰富,如光学防抖、大光圈、3DSensing摄像头、潜望式摄像头等,不断更新迭代的摄像头给用户带来新的消费体验。光学防抖通过镜头的抖动来抵消手的抖动,实现更清晰稳定的拍照效果;大光圈能够获得更高的通光量,实现背景虚化、突出主题、提高对焦速度等效果;潜望式摄像头能够在有限空间内大幅增加摄像头的焦距,实现更好的光学变焦;3DSensing摄像头可以通过解读三维的位置及尺寸信息,来实现实时的三维信息采集,从而为消费电子终端加上了物体感知功能。光学防抖,大光圈,潜望式摄像头实现了更好的拍照效果,3DSensing摄像头打破了2D到3D的边界,拓展了摄像头的应用范围,提高了用户的消费体验。未来,除了摄像头模组厂商自身的工艺和技术创新外,下游客户如手机厂商、无人机厂商等,为了实现差异化竞争和更好的用户体验,也会进一步加速摄像头的更新速度,使摄像头的种类不断丰富。(五)摄像头模组行业向上游原材料行业进行垂直整合向上进行深度的原材料行业整合,实现协同效应,将是摄像头模组企业扩大市场规模,提升毛利率水平,加强竞争优势的重要手段,也是模组企业的未来发展趋势。目前欧菲光、舜宇光学已经深入光学镜头生产领域,模组企业通过涉入上游原材料行业,加强垂直产业整合,将有利于企业把握行业发展方向,提高创新能力,全面提升市场竞争力。(六)摄像头模组行业市场集中度持续提升摄像头模组行业作为资本与技术密集型行业,规模效应明显。模组厂商在前期需要投入较高的资金进行产能建设与产品研发,高昂的资金需求使得中小企业难以负担;稳定的高良品率是模组厂商的核心竞争力,在生产过程中,模组厂商需要不断投入资金进行工艺的改进,以提高生产效率和产品良品率,而中小企业普遍因为投入不够导致良品率较低;同时,下游智能手机客户集中度较高,且具有需求量大及弹性高的特点,中小型模组厂商无法及时交付大批量、高品质的摄像头模组,无法匹配下游客户的需求,而大型摄像头模组厂商生产能力、订单交付能力较强,获得下游客户订单的可能性更高;此外,大型摄像头模组厂商生产能力强,具备承接对摄像头模组精度要求较高的旗舰机型订单的能力,从而导致大型模组厂商的市场占有率持续提升。同时大型模组厂商将有能力更多地在开发新技术、扩大摄像头模组应用领域等方面投入资源,进一步降低生产成本,提高利润水平,不断巩固自己的龙头地位。中国摄像头模组产业链快速崛起截至2020年末,全球手机摄像头模组的前三大供应商分别为欧菲光、舜宇光学和丘钛微,均为中国企业。摄像头模组同时作为汽车电子、IoT等智能终端的核心传感器,国内智能汽车、IoT领域庞大的市场需求将会进一步带动摄像头模组的快速发展和更新迭代,进一步加快摄像头模组的技术和工艺创新,推动境内摄像头模组产业链的快速崛起。CCM产业布局情况摄像头模组行业竞争较为激烈,尽管目前行业内少数企业具备较强的技术研发优势和稳定的客户资源,市场份额较高,从全球范围看,光电摄像模组厂商主要集中在中国大陆、日韩等国家和地区。行业内主要竞争对手有欧菲光、舜宇光学、丘钛微、合力泰、信利国际、LGInnotek、同兴达和联创电子。摄像头模组行业上游原材料的趋势逐渐加强高端CMOS图像传感器芯片依旧为日韩厂商主导,但是以豪威科技、格科微为代表的境内厂商与日韩厂商的差距逐渐减小。在光学镜头领域,根据TSR预测,舜宇光学在2020年位列光学镜头领域市场份额第一位,与中国台湾地区厂商大立光在超高端光学镜头的差距进一步缩小。在音圈马达领域,TSR数据显示,2019年市场排名前三的厂商分别为:阿尔卑斯、TDK和三美集团,均为日本厂商,但国内主要生产厂商皓泽电子和中蓝电子的市场份额占比从2017年的3.8%、4.4%分别增长至2019年的10.5%、9.5%。摄像头模组行业产业链分析摄像头模组的工作原理是被拍摄景物的光线通过镜头,经过滤光片滤除红外线,将可见光部分投射到CMOS图像传感器芯片,光信号通过光电二极管转换成电信号,然后通过模数转换电路(A/D)将获得的模拟信号转换成数字信号并对信号进行初步的处理后输出。摄像头模组行业发展趋势现在中国已经发展成全球最大的消费电子市场,摄像头模组作为消费电子主要的传感器,发展机遇快速崛起。截至2022年底,全球手机摄像头模组的前三大供应商分别为欧菲光、舜宇光学和丘钛微,均为中国企业。摄像头模组同时作为汽车电子、IoT等智能终端的核心传感器,国内智能汽车、IoT领域庞大的市场需求将会进一步带动摄像头模组的快速发展和更新迭代,进一步加快摄像头模组的技术和工艺创新,推动境内摄像头模组产业链的快速崛起。经过美国经济制裁中国华为等高科技企业的教训后,CCM模组厂在图像传感器、光学镜头、音圈马达和封装胶水等主要原材料行业中,逐步提高国产厂商的市场占有率,强化进口替代。高端图像传感器依旧为日韩厂商主导,但是以豪威科技、格科微为代表的境内厂商与日韩厂商的差距逐渐减小,豪威科技已经实现6,400万像素的图像传感器的量产,格科微在1,300万像素及以下的图像传感器市场中占据重要地位。在光学镜头领域,根据预测,舜宇光学在2022年位列光学镜头领域市场份额第一位,与中国台湾地区厂商大立光在超高端光学镜头的差距进一步缩小。在音圈马达领域,数据显示,2022年市场排名前三的厂商分别为阿尔卑斯、TDK和三美集团,均为日本厂商,但国内主要生产厂商皓泽电子和中蓝电子的市场份额占比从2019年的10.5%、9.5%分别增长至2022年的14.5%、12.0%,预计2025年市场份额将会进一步提高。伴随5G通信、智能驾驶、3DSensing等新一代技术的不断商业化,摄像头模组的应用场景也在逐渐增加。智能手机等消费电子行业是摄像头模组的传统应用场景,消费者对拍摄效果优质化、多样化的需求推动着手机摄像头配置、技术的快速发展,也推动着手机摄像头市场规模的不断增长。汽车电子、物联网正在成为摄像头模组的重要应用场景。随着智能驾驶、车联网技术的逐渐普及,智能汽车拥有广阔的市场需求。摄像头作为获取驾驶信息、提供交流方式的重要通道,单辆汽车所需摄像头的数量会快速增加,以满足自动驾驶和休闲娱乐的需求,因此车载摄像头的需求将会不断增长。物联网应用场景众多,如智能家居、智能城市、智能农业等,其中摄像头模组作为光学成像的重要传感器,主要应用在机器视觉、高清视频等领域。例如在扫地机器人、冰箱等智能家居中,摄像头模组可以起到3D感测、周围环境判断等功能,在无人机等智能机器人中可以识别障碍物,拍照摄影等。伴随消费者需求的多样化和模组厂商工艺技术的创新,摄像头的功能和种类正在不断丰富,如光学防抖、大光圈、3DSensing摄像头、潜望式摄像头等,不断更新迭代的摄像头给用户带来新的消费体验。光学防抖通过镜头的抖动来抵消手的抖动,实现更清晰稳定的拍照效果;大光圈能够获得更高的通光量,实现背景虚化、突出主题、提高对焦速度等效果。潜望式摄像头能够在有限空间内大幅增加摄像头的焦距,实现更好的光学变焦。3DSensing摄像头可以通过解读三维的位置及尺寸信息,来实现实时的三维信息采集,从而为消费电子终端加上了物体感知功能。光学防抖、大光圈和潜望式摄像头实现了更好的拍照效果,3DSensing摄像头打破了2D到3D的边界,拓展了摄像头的应用范围,提高了用户的消费体验。未来,除了摄像头模组厂商自身的工艺和技术创新外,下游客户如手机厂商、无人机厂商等,为了实现差异化竞争和更好的用户体验,也会进一步加速摄像头的更新速度,使摄像头的种类不断丰富。摄像头的种类不断丰富随着消费者需求的多样化和模组厂商工艺技术的创新,摄像头的功能和种类正在不断丰富,如光学防抖、大光圈、3DSensing摄像头、潜望式摄像头等,不断更新迭代的摄像头给用户带来新的消费体验。摄像头是一种影像捕捉的微型相机模组,主要由光学镜头、图像传感器、音圈马达,以及红外滤光片、基座、被动组件、基板、软板等组成(其中,镜头厂家主要集中在中国台湾、日本和韩国,业内比较知名的企业如富士精机、柯尼卡美能达、大立光、Enplas等;CCD传感器模块以日本厂商为主导,全球规模市场有90%以上被日本厂商垄断,以索尼、松下、夏普为龙头;CMOS传感器主要美国、中国台湾和韩国为主导,主要生产厂家有美国OmniVision、Agilent、Micron,中国台湾的锐像、原相、泰视等,韩国的三星、现代等)。它的工作原理就是将光信号数字化的过程,摄入景物通过镜头传输到感光元器件(CCD或CMOS)上,将光信号转化成电信号,然后经过传感器转化成数字信号,输出到处理器(DSP)上进行图像信号增强、压缩优化以及处理后输出。智能终端设备通过摄像头模组完成光学成像,实现拍照摄影、信息捕捉与分析、视觉交互等功能。CCM产业应用现状近年来智能手机采用多颗摄像头(3摄/4摄)已经极为常见。甚至低位段的品牌机型也开始搭载这类设计,由此带动了市场对相关零部件的需求。虽然整体的需求量大幅增长,但不同价位段的终端产品所采用的模组设计、用料都有很大差异,CCM的产品单价也参差不齐,并不是所有厂商,都能因为量的增长而实现获利。其中,一线品牌近年来在影像方面的创新,几乎不再以增加摄像头数量为卖点,而是切换到通过组合不同功能的摄像头实现更多元化的影像效果,例如:较为热门的3D感知、AR、潜望式光学变焦等等,抑或是加强对软件算法、ISP芯片的开发。与此同时,终端品牌开始将多摄像头的设计更大面积的普及,向自家中低价位的机型辐射,将高端、旗舰机之前主打的卖点向下延申。不过显而易见的是,现阶段多摄像头的普及还停留在形态标准化的阶段,除数量以外,多摄在造价、功能、效果上都存在相当大的差异。由于这类多摄对产品设计、制程的难度都大打折扣,就意味着有相当一部分的模组厂具备生产能力,市场需求量增加的同时竞争也在加剧。举个栗子,现在多颗摄像头甚至可以不需要通过CCM组装,模组厂只需要交单颗模组给ODM/OEM厂商,由它们在整机组装时直接把三颗模组放到一起,这样做能明显降低成本,但也基本上就是做了一个摆设。这类技术门槛极低的产品在出货和成本压力不断增加的终端厂商面前几乎毫无议价能力可言。即使现在手机、汽车、安防等领域对于低像素摄像头产品的需求增长趋势日胜一日,但鲜有一线品牌模组厂会回头去做这些产品,它们更感兴趣协助品牌客户不断开发新的差异化高阶模组。究其原因,就是它们在普通的低像素产品中的利润空间极小,除非一些特殊产品,像素低却具备其他功能,短期来看,这类产品的需求确实存在,但消费电子市场的变化日新月异以及近年来不少新兴市场对于CCM的需求也明显提升,比起局限于眼前的价格竞争,不如花

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论