版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/4/10PhysicalChemistry—ChemicalKineticsPhysicalChemistryBasictheoreticalsystemDisciplinarysystemThermochemistryElectrochemistryPhotochemistryCatalysisColloidandinterfacesMolecularreactiondynamicsThermodynamicsStatisticalthermodynamics(Direction&equilibriumofreactions)KineticsQuantum&structuralchemistry(Rates&mechanism)2023/4/10J.Phys.Chem.(ACS)Established1897-1997A&B2007A&B&C2010A&B&C&LettersPhysicalChemistryJournalsContentsChapter8ChemicalKineticsChapter10ChemicalKineticsforSomeSpecific
SystemsChapter9RateTheoryforElementaryReactions2023/4/102023/4/10Chapter8ChemicalKinetics8.2Ratesofreactions8.3Ratelaws8.4Integratedratelaws8.5Determinationoftheratelaw8.6Temperaturedependenceofreactionrates8.1Introductiontochemicalkinetics2023/4/10Chapter8ChemicalKinetics8.7Elementaryandcomplexreactions8.8Reactionkineticsandequilibriumstate8.10Speculationofreactionmechanism8.9Activationenergyforplexreactions2023/4/108.1IntroductiontoChemicalKineticsThelimitationsofthermodynamicsTheobjectsofchemicalkineticsBriefhistoryofchemicalkinetics2023/4/10Thermodynamics:LimitationsOndirectionsofspontaneousreaction,equilibrium,andthefactorsinfluencingtheequilibrium.Predictingpossibility
ofareaction.Forexample:Thermodynamics:can’tanswer
howtomakethemhappen;howfasttheywilltakeplace(timeasavariable);thereactionmechanism.2023/4/10ChemicalKinetics:MainObjectsThestudyofreactionrates(consideringtime),theinfluencesofvariablessuchastemperature,pressureandcatalystontherates,andthereactionmechanisms.T,P,catalystT,P,catalystChemicalKineticsChemicalKineticspossibilityreality2023/4/10MainTasksofKineticsForexamples:>700KH2+Cl2→2HClr∝[H2][Cl2]1/2H2+Br2→2HBrr∝[H2][Br2]1/2/(1+k’[HBr]/[Br2])H2+I2→2HIr∝[H2][I2]Whysodifferent?Differentreactionmechanism!1.Reactionratesandtheinfluencesofvariablesonrates2.Reactionmechanisms3.Rateofelementaryreactionsandeffectofmolecularstructures4.Natureofchemicalreactions5.Howtocontrolchemicalreactions2023/4/10Empiricalchemicalkinetics
~1864C.M.Guldberg&P.Waage(Norway)LawofMassAction
~1850LudwigF.Wilhelmy(Germany)Hydrolysisofsucrose:r=k[sucrose][H+]Therateisproportionaltotheconcentrationofthereactants
~1865Harcourt&Esson(UK)Ratelaw:differentialandintegratedformulasBriefHistoryofKinetics2023/4/10Dependenceofrateonconcentration~1884JacobusH.van’tHoffr=f(c)=k∏ciaiiai反应分子数(反应级数)Conceptofreactionorder1852-1911BerlinUniversity1901NobelPrize“inrecognitionoftheextraordinaryserviceshehasrenderedbythediscoveryofthelawsofchemicaldynamicsandosmoticpressureinsolutions”.《Studiesindynamicchemistry》~1887WilhelmOstwald1853-1932LeipzigUniversity1909NobelPrize“inrecognitionofhisworkoncatalysisandforhisinvestigationsintothefundamentalprinciplesgoverningchemicalequilibriaandratesofreaction”
BriefHistoryofKinetics2023/4/10Dependenceofrateontemperature1891SvanteA.Arrhenius1903NobelPrize1884J.H.van’tHofflnk=A
−B/T
dependenceofrateontemperature“inrecognitionoftheextraordinaryserviceshehasrenderedtotheadvancementofchemistrybyhiselectrolytictheoryofdissociation”SvanteArrhenius1859-1927StockholmUniversityArrheniusequation12BriefHistoryofKinetics2023/4/10物理化学三剑客FriedrichWilhelmOstwald1853-1932LeipzigUniversitySvanteA.Arrhenius1859-1927StockholmUniversityJacobusHendricusvan’tHoff1852-1911BerlinUniversity1901NobelPrize1903NobelPrize1909NobelPrizeBriefHistoryofKineticsvan’tHoffandOstwaldB.Harrow,“EminentChemistsofourTime”,19202023/4/102023/4/10Elementarychemicalkinetics1935Eyring:Activatedcomplextheory
(Transitionstatetheory)1913Bodenstein:Chainreactions
Semenoff&Hinshelwood:1956NobelPrize1918Lewis:Collisiontheory
RatetheoryPolanyi,WignerBriefHistoryofKinetics2023/4/10State-to-StateDynamics−MolecularReactionDynamics1960Cross-beamreactionsD.R.Herschbach-Y.T.Lee-J.C.Polanyi“fortheircontributionsconcerningthedynamicsofchemicalelementaryprocesses”(1932-)HarvardUniv.(1929-)Univ.ofToronto(1936-)UCBerkeley161986NobelPrizeBriefHistoryofKinetics2023/4/10Timescale1923H.Hartridge&F.J.W.Roughton~1950ManfredEigen10-6s1967NobelPrizeTimeResolution“fortheirstudiesofextremelyfastchemicalreactions,effectedbydisturbingtheequlibriumbymeansofveryshortpulsesofenergy”10-3sflowmethodorstoppedflowtechniques(1927-)MaxPlanckInstituteofPhysicalChemistry(Goettingen)relaxationmethodBriefHistoryofKinetics2023/4/10~1950R.G.W.Norrish&G.Porter10-6s10-9s10-12s1967NobelPrize(sharedwithM.Eigen)TimeResolution“fortheirstudiesofextremelyfastchemicalreactions,effectedbydisturbingtheequlibriumbymeansofveryshortpulsesofenergy”flashphotolysismethod(1897-1978-)InstituteofPhys.Chem.,Cambridge(1920-2002)RoyalInstitutionofGBBriefHistoryofKinetics2023/4/10~1980AhmedZewailTimeResolution1999NobelPrize“forhisstudiesofthetransitionstatesofchemicalreactionsusingfemtosecondspectroscopy”(1946-)CALTECHFemtochemistry:Atomic-ScaleDynamicsoftheChemicalBondUsingUltrafastLasers10-15sBriefHistoryofKinetics2023/4/108.2RatesofReactionsReactionratesandtheirunits
反应速率及其单位、各表达形式间的互换FocusesHowtomeasurereactionrates2023/4/10VelocityandRatevelocity
vector,withdirectionsratescalar,withoutdirection,allpositiveForexample2023/4/10ExtentofReactionConsiderareaction:aA+bB→gG+hH0=∑nBBB(nB,stoichiometricnumberofB)x=nB(t)–nB(0)nBUnit:mol2023/4/10RateofConversion&RateofReactionConsiderareaction:Rateofconversion:
mol·s-1Rateofreaction:1dnBVnBdt=mol·dm-3·s-12023/4/10RateofReactionatConstantVolumeForanyreactions:
AtconstantV:mol·dm-3·s-12023/4/10RateofReactionExpressedwithPressure
Forgaseousreactions,piseasytomeasure量纲:分压·时间-1Unit:Pa·s-1orkPa·s-1
r’=1nBdpBdtForexample:N2+3H2→2NH3r’=dpN2dt1dpH23dt=1dpNH32dt=Foridealgas,pB=cBRTr’=(RT)r2023/4/10InstantaneousRate&InitialRateInstantaneousrateistheslopeofthetangent
Inthecurveshowingthevariationofconcentrationwithtime:Initialrate:r0=-(d[R]/dt)t=0Att=0262023/4/10ReactionRateMeasurements-DrawingKineticCurvesKineticcurvesarechangesinconcentrationsofreactantsorproductswithtime.Withkineticcurves,wecangettherateofreaction.2023/4/10Techniquesformonitoringtheconcentrations(1)Chemicalmethod
Atdifferenttimes,samplingacertainamountofreactants,stoppingthereactionbycooling,dilutionandremovingcatalyst,thenmakingchemicalanalysis2023/4/10(2)Physicalmethod
Monitoringthechangesinconcentrationsusingvariousphysicalproperties(totalpressure,旋光、折射率、电导率、电动势、粘度etc.)orspectroscopicmethods(IR、UV-VIS、ESR、NMR、ESCA
etc.)Techniquesformonitoringtheconcentrations物理化学实验九(旋光法),十(电导法)2023/4/10TechniquesforrapidreactionsFlowmethodandstoppedflowtechniquesmethod(1ms-1s);Relaxationmethod(<1ms);Flashphotolysis(<1ms,-~ps).2023/4/108.3RateLawsRatelaws
速率方程Integratedratelaws
动力学方程
Reactionorder反应级数Ratecoefficient(rateconstant)反应速率常数(系数)Focuses2023/4/10RateLaws
Inabroadsense,theratelawisanequationthatexpressestherateofreactionasafunctionofallaffectingfactors=f(c,T,catalyst,…)=Incommonsense,theratelawreferstoanequationthatexpressestherateofreactionasafunctionoftheconcentrationsofallspecies=f(c)1dcinidtmustbedeterminedfromexperiments!2023/4/10IntegratedRateLawsRatelaws=f(c)1dcinidtdifferentialequationc=f(t)IntegratedratelawsForexamples:r=-d[A]/dt=k[A]lnkt=[A]0[A]Ratelaw(速率方程)Integratedratelaws(动力学方程)2023/4/10ReactionsPossessingReactionOrdersTher=f(c)mustbedeterminedbykineticexperiments.Onlyinthiscase,reactionordersexist!aA+bB→eE+fFr=f(c)=kcAaAcBaBcEaEcFaF=k∏ciaiiFormanyreactions,2023/4/10ReactionorderThepowertowhichtheconcentrationofaspeciesisraisedistheorderwiththisspeciesTheoverallorderofareaction(n)isthesumoftheindividualordersaA,aB,aE,aFn=aA+aB+aE+aF2023/4/10Note(1)Onlywhenr=f(c)=kcAaAcBaBcEaEcFaF
=k∏ciaiReactionorderexists.(2)Reactionorderisnotthestoichiometricnumber!
Itmaybepositive,negative,integer,fractionorzero.(3)Reactionorderisdeterminedbyexperiments.Itmaybechangedwithexperimentalconditions.2023/4/10ReactionOrder:ExamplesZero-orderFirst-orderSecond-orderThird-orderNegativeFirst-order1.5-orderNosimpleorder2023/4/10Ratecoefficient
Thecoefficientintheratelawiscalledratecoefficientorrateconstant(k).(1)k
isindependentofconcentrationsofreactants.Itisgenerallyisafunctionoftemperature(ifcatalystissettled)(2)Theunitofkdependsonreactionorder(n),
mol1-n·dm3(n-1)·s-1(3)Whenpisusedinsteadofconcentration,kp=kc(RT)1-n2023/4/10PseudoReactionOrder
Inratelaws,iftheconcentrationofonereactantisinlargeexcess,itcanbeincorporatedintothecoefficientterm,theapparentreactionordercalledpseudoreactionorder,willbedecreasedandsimplified.Forexamples:Pseudo-first-orderratelaw2023/4/108.4IntegratedRateLaws
Ratelawsaredifferentialequations,wemustintegratethemifwewanttofindtheconcentrationsasafunctionoftime.Also,theintegratedratelawsaregenerallyusedforobtainingthereactionorderandtheratelaw.2023/4/10FocusTheusuallyused
integratedratelaws积分速率方程(2)Theunitofk速率常数单位(3)half-life(t1/2)半衰期Thissectionisveryimportant,thefocusistograspthefeaturesofthereactionswithdifferentorders.FocusesForasetofexperimentaldata,howtogetnandk2023/4/10First-OrderReactionsTherateofreactionisproportionaltotheconcentrationofreactantExamples:2023/4/10First-OrderReactions:DifferentialRateLawsorConsider:DifferentialRateLaws2023/4/10First-OrderReactions:IntegratedRateLaws-ln[A]tFirst-orderreaction:-ln[A]vst–ln[A]=kt+C2023/4/10First-OrderReactions:IntegratedRateLawsln[A]0[A]=kt[A]=[A]0e(-kt)ln[A]0[A]0-x=kt=ln11-yyisthefractionofreactedA2023/4/10Half-livesFirstorderreaction:ln[A]0[A]=ktt1/2=ln2/kt3/4=2ln2/kt7/8=3ln2/kAt[A]=½[A]0t1/2
:t3/4:t7/8=1:2:3For1storderreaction:t1/2=ln2/k
t1/2
iscalledthehalf-life(半衰期)2023/4/10TimeConstantsFirstorderreaction:ln[A]0[A]=ktisalsotherelaxationtime(驰豫时间)isalsothemeanlifetime(平均寿命)[A]=[A]0/et=1/ktiscalledtimeconstant2023/4/10一级反应的特点3.速率系数k的单位为时间的负一次方,时间t可以是秒(s),分(min),小时(h),天(d)和年(a)等4.半衰期(half-lifetime)t1/2
是一个与反应物起始浓度无关的常数,t1/2=ln2/k1.ln[A]与t呈线性关系,斜率为–k2.=常数=k==1
t[A]0[A]ln1
t1[A]0[A]1ln1
t2[A]0[A]2ln5.
6.
反应间隔t相同,有定值2023/4/10Example1某金属钚的同位素进行β放射,14d后,同位素活性下降了6.85%。试求该同位素的:(1)蜕变常数,(2)半衰期,(3)分解掉90%所需时间。11ln1ky=-解:(1)1t2023/4/10Example2在373K,气相反应A→2B+C是一级反应,从纯A开始实验,10min时测得体系的总压是23.47kPa,反应终了时的总压为36.00kPa。试由这些数据,(1)计算A的始压,(2)求反应的速率常数和半衰期,(3)计算100min时的A的压力及总压。解:
A→2B+Ct=t0
p000t=t
pA2(p0−pA)p0−pAt=t∞02p0
p0p∞=3p0(1)p0=p∞/3=12.00kPa(2)t=10min:pA=(3p0-pt)/2=6.265kPapt=3p0−2pA总压t
1/2=lnk/2=10.66min(3)t=100min:pA=p0e(-kt)=0.018kPa2023/4/10Second-OrderReactions2023/4/10Second-OrderReactions:IntegratedRateLaw-12AP2023/4/10Second-OrderReactions:Features-1[A]-1tSecond-orderreaction:1/[A]vstHalf-life:2023/4/10Second-OrderReactions:IntegratedRateLaw-2If[A]o=[B]oDifferentialRateLawsA+BP2023/4/10Second-OrderReactions:Features-2[A]-1tSecond-orderreaction:1/[A]vstHalf-life:2023/4/10Second-OrderReactions:IntegratedRateLaw-3If[A]o[B]o2023/4/10二级反应(纯二级或混二级之[A]0=[B]0)的特点引伸的特点:对的二级反应,=1:3:7。1.与t成线性关系,斜率为k或kA(kA=ak)1[A]2.=k或kA,k的量纲为[浓度]-1
[时间]-1
1t[1[A]1[A]0]-3.半衰期与起始物浓度成反比2023/4/10二级反应(混二级之[A]0≠[B]0)的特点3.半衰期只能分别对A或B定义1.ln与t成线性关系,斜率为([B]0-[A]0)k[B]/[B]0[A]/[A]02.,速率常数k的单位为
[浓度]-1
[时间]-1
2023/4/10自学(1)二级反应aA+bB→P r=k[A][B](2)零级反应aA→P r=kA2023/4/10nth-orderreaction:IntegratedRateLawsaA→P r=k[A]nConsider:Differentialequation(n≠1)IntegratedRateLaws2023/4/10nth-OrderReaction:Half-Lives(n≠1)2023/4/10nth-OrderReaction:分数寿期(n≠1)2023/4/10n级反应的特点当n=0,2,3时,可以获得对应的反应级数的积分式。但n≠1,因一级反应有其自身的特点,当n=1时,有的积分式在数学上不成立。1.与t呈线性关系1[A]n-12.=k或kA,k的量纲为[浓度]1-n[时间]-1
1(n-1)t[1[A]n-11[A]0n-1]-3.半衰期的表示式为:t1/2=(n-1)kA[A]0n-12n-1-12023/4/108.5DeterminationoftheRateLaw
Fromintegratedratelaws—积分法(尝试法)Isolationmethod(pseudo-reactionorder)—隔离法Methodofhalf-life—半衰期法Fromdifferentialratelaws—微分法Methodofinitialrates—初速法2023/4/10Focuses
Themostimportantthingfortheempiricalchemicalkineticsisto
establishtheratelaws
fromexperiments.Generally,thereactionorderisdeterminedinthefirststep,thentheratecoefficientisworkerout.本节要求学会,从给出的实验数据(浓度、分压、物理性质随时间的变化;初速随浓度的变化等),以最简捷的方法确定反应级数和速率常数。Focuses2023/4/10FromIntegratedRateLaws
积分法又称尝试法。当实验测得了一系列[A]~
t或x~t的动力学数据后,作以下两种尝试:1.Putthedataof[A]~tintotheintegratedratelawsfordifferent-orderreactions,thencalculatethekIftheobtainedkisaconstant,thentheassumedreactionorderiscorrect.2.Plot,ln[A]~t,[A]-1~t,[A]-2~t
linear[A]~tzeroth-orderlinearln[A]~tfirst-orderlinear[A]-1~tsecond-order2023/4/10SummaryofIntegratedRateLawsZeroth-orderk=x
t=[A]0-[A]tFirst-orderk
=1
t[A]0[A]lnSecond-order111t[[A][A]0]-k=nth-ordera(b-x)b(a-x)1t(b-a)lnk=[A]0=[B]0
[A]0(a)≠[B]0(b)111(n-1)t[[A]n-1[A]0n-1]-k=[A]0=[B]0=‥*如反应物的计量系数为n,则右边应除以n2023/4/10Example3t/h481216ρ/[mg•(100cm3)-1]
0.4800.3260.2220.151某抗菌素在人体血液中的分解反应具有简单的反应级数,给患者注射一针抗菌素后,测得抗菌素在血液中的质量浓度ρ随时间的变化如下表所示:(1)试求该分解反应的级数;(2)计算反应的速率常数和半衰期;(3)若抗菌素在人体血液中的质量浓度不低于0.370mg•(100cm3)-1才有效,求应该在多长时间后必须注射第二针。t/h481216ρ/[mg•(100cm3)-1]
0.4800.3260.2220.151lnρ-0.734-1.121-1.505-1.8902023/4/10Example3t/h481216ρ/[mg•(100cm3)-1]
0.4800.3260.2220.151[A]i/[A]i+11.4721.4691.470等时间间隔:一级反应[A]i/[A]i+1
=常数等时间间隔:二级反应、零级反应?2023/4/10MethodofHalf-lifeExpressionsofhalf-lifet1/2=ln2kIndependentofconcentrationt1/2=1k[A]0与起始浓度成反比t1/2=2k[A]02与起始浓度平方成反比3t1/2=(n-1)k[A]0n-1与起始浓度n-1次方成反比2n-1-1如反应物的计量系数为n,则右边应用kA(nk)First-orderSecond-ordernth-orderThird-order2023/4/10ACommonWayoftheMethodofHalf-Life
Foranth-orderreaction2.Plotlgt1/2versuslg[A]o,evaluatenfromtheslope1.Selecttwodifferentinitialconcentration[A]oand[A]o’,measurethehalf-lives.Forthesamereaction,Cisthesame,thus,lgt1/2=lgC+(1-n)lg[A]oor,2023/4/10Example42N2O5(g)→4NO2(g)+O2(g)t/min012345[N2O5]/(moldm-3)1.0000.7050.4970.3490.2460.173Determinetheorderofthereactionandcalculatetheratecoefficientandhalflife可将每一时间间隔起点的反应物浓度作为初始浓度,根据一次的[A]~t结果确定两组和多组t1/2~[A]0,简便判断反应级数。2023/4/10FromDifferentialRateLawsLargererrors,butsuitableforreactionswithnon-integerorderPlotcurveof[A]~tDrawthetangent,workout–d[A]/dtPlotln(-d[A]/dt)vs.ln[A]Procedure:
A→Pt=0
[A]0
0t=t [A] xTheslopeofthestraightlinewillbenPlotvs.ln[A]2023/4/10MethodofInitialRatelgr0=lgk+nlg[A]0Plotlgr0
versuslg[A]0,theslopeofthestraightlinewillben初速法的优点在于可以避免产物的干扰,且可适用于较慢的反应2023/4/10Example5
Theinitialrateofthereaction(A+B→P)dependedontheinitialconcentrationsofAandBasfollows:Initialconcentration/mol·dm-3cA,01.02.03.01.01.0cB,01.01.01.02.03.0r0/mol·dm-3·s-10.150.300.450.150.15Answer:Assumer=kcAmcBn
Fromthefirst3group,weknow,m=1;Fromthelast2groups,n=0;sor=kcA;k=0.15s-1.Determinetheorderofthereactionandcalculatetheratecoefficient.2023/4/10MethodofIsolationThismethodisforthesimplificationofexperiments,andmustbeusedwithothermethods1.Doexperimentat[A]>>[B]DetermineβDetermineα2.Doexperimentat[B]>>[A]2023/4/10Example:CombinationwithIsolationwithHalf-LifeMethodsForagas-phasereaction,2NO+H2→N2O+H2O,theratelawcanbeexpressedasr=kpNOapH2b,calculatea,b
andk
basedonthefollowingexperimentalresultspNOo/kPapH2o/kPat1/2/s80801.32.61.32.6808019.219.2830415Answer:Forthefirsttwogroups,pNO>>pH2,sopNOcanbeviewedunchanged,
r=kpNOoa
pH2b
=k’pH2b
Thust1/2
isforH2
Becauset1/2
isindependentofpH20,weknowb=1Fromthelattertwogroups,pH2>>pNO
r=kpH20pNOa=k”pNOa.Thust1/2
isforNOBecauset1/2
isproportionalto(pNOo)-1,wegeta=22023/4/10RelationshipofPhysicalPropertywithConcentration
Inkineticexperiments,monitoringthechangesinconcentrationsusingaphysicalproperty(l)isasimpleway,therequirementsforthephysicalpropertyare:1)该物理量对于反应物与产物有明显差异;2)与浓度有函数关系,如线性函数;3)具有加和性。2023/4/10RelationshipConsiderareaction0=∑nB·B设l0、l及l∞分别是时间为0,t及∞时体系中某物理量的值;[B]0,[B]为0及t时刻的某物种的浓度;A为某反应物,t=∞时反应完全,当反应进度为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务教案 基础 重点
- 《买菜》中班下学期科学教案
- 期权抵押合同融资租赁合同
- 生物质发电项目招投标申请表
- 大桥建设项目招投标报名
- 河堤地面施工协议
- 仓储物流设施招标承诺书模板
- 教育培训机构薪酬激励
- 燃气调压站员工安全培训
- 工厂蒸汽管道铺设工程合同
- DB11_T1883-2021 非透光幕墙保温工程技术规程(高清最新版)
- 苏教版数学 五年级上册 教材分析
- 机读答题卡模板 英语
- 工程项目专项监督检查表
- 特种设备目录(国质检锅[2004]31号)
- 品质管控流程图
- 专业技术人员技术档案(模板1)
- 铸造用纯铜及铜合金的熔炼工艺
- GB-T-13916-2013-冲压件形状和位置未注公差
- 机械手册-中英文对照表1
- 六辊轧机操作说明书
评论
0/150
提交评论