![2023届福建三明市市级名校中考猜题数学试卷含解析_第1页](http://file4.renrendoc.com/view/02c49cb8cde2cf54d96f287e019e6b81/02c49cb8cde2cf54d96f287e019e6b811.gif)
![2023届福建三明市市级名校中考猜题数学试卷含解析_第2页](http://file4.renrendoc.com/view/02c49cb8cde2cf54d96f287e019e6b81/02c49cb8cde2cf54d96f287e019e6b812.gif)
![2023届福建三明市市级名校中考猜题数学试卷含解析_第3页](http://file4.renrendoc.com/view/02c49cb8cde2cf54d96f287e019e6b81/02c49cb8cde2cf54d96f287e019e6b813.gif)
![2023届福建三明市市级名校中考猜题数学试卷含解析_第4页](http://file4.renrendoc.com/view/02c49cb8cde2cf54d96f287e019e6b81/02c49cb8cde2cf54d96f287e019e6b814.gif)
![2023届福建三明市市级名校中考猜题数学试卷含解析_第5页](http://file4.renrendoc.com/view/02c49cb8cde2cf54d96f287e019e6b81/02c49cb8cde2cf54d96f287e019e6b815.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.2.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB3.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)4.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A. B. C. D.5.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个 B.4个 C.3个 D.2个6.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)
25
26
27
28
天数
1
1
2
3
则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,277.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A. B.C. D.8.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.59.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A. B. C. D.10.一元二次方程x2+2x﹣15=0的两个根为()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=511.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.212.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若二次函数y=-x2-4x+k的最大值是9,则k=______.14.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.15.已知a+b=1,那么a2-b2+2b=________.16.因式分解______.17.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.18.函数y=+中,自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.20.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).21.(6分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?22.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.23.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)24.(10分)如图,一次函数y=kx+b的图象与反比例函数y=
(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.25.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.26.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.27.(12分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.2、C【解析】
根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.3、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.4、D【解析】∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴,,∴选项A、C错误,选项D正确,选项B错误,故选D.5、B【解析】
解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.6、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.7、D【解析】解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.8、C【解析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.9、C【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×+1×=+,水之和为:+,∴混合液中的酒精与水的容积之比为:(+)÷(+)=,故选C.【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.10、C【解析】
运用配方法解方程即可.【详解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.11、C【解析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.12、C【解析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5【解析】y=−(x−2)2+4+k,∵二次函数y=−x2−4x+k的最大值是9,∴4+k=9,解得:k=5,故答案为:5.14、(2,2).【解析】
连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.【详解】如图,连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.故答案为:(2,2).【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.15、1【解析】
解:∵a+b=1,∴原式=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.16、a(3a+1)【解析】3a2+a=a(3a+1),故答案为a(3a+1).17、.【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=,则点C坐标为(x,),在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,则点D的坐标为(,),将点C的坐标代入反比例函数解析式可得:,将点D的坐标代入反比例函数解析式可得:,则,解得:,(舍去),故=.故答案为.考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.18、x≥﹣2且x≠1【解析】分析:根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.详解:∵有意义,∴,解得:且.故答案为:且.点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)=x2+7+(2)见解析【解析】
(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为1,即原式的最小值为1.20、100米.【解析】【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到赛道AB的距离为100米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.21、(1)200;(2)108°;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).
∴此次共调查200人.
(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.
(3)补全如图,(4)1500×40%=600(人).
∴估计该校喜欢体育类社团的学生有600人.【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.22、(1)5;(2)1或﹣1.【解析】
(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.【详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=1或﹣1.【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.23、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.24、(1)y=2x﹣5,;(2).【解析】
试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积.试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)如图,S△ABC=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.25、(1)S=﹣2(0<t<1);(2);(3)见解析.【解析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由题意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如图2,在Rt△APM中,AP=4t,∵点Q关于O的对称点为M,∴OM=OQ,设PM=x,则AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:当t为秒时,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商行业的技术创新与智能化发展
- 2025年上海外服(陕西)人力资源服务有限公司招聘笔试参考题库附带答案详解
- 现代服务业的国际化战略与挑战
- 振动、磁辐射、放射线监测仪项目可行性研究报告及运营方案
- 现代医疗设施中地下管线系统的优化策略
- 南京市鼓楼区2024年七年级《语文》下册期中试卷与参考答案
- 电子竞技产业中的消费者行为研究
- 长沙市雨花区2022年七年级《语文》上册期末试卷与参考答案
- 2025年浙江金华金开招商招才服务集团有限公司招聘笔试参考题库附带答案详解
- 妇产科护理模拟试题与答案
- 课题申报参考:生活服务数字化转型下社区生活圈建设理念、模式与路径研究
- 人教版数学八年级下册 第16章 二次根式 单元测试(含答案)
- 甘肃省民航机场集团招聘笔试冲刺题2025
- 心理学基础知识考试参考题库500题(含答案)
- 北师大版小学三年级数学下册全册教案
- DCMM练习题练习试题
- 《工业化建筑施工阶段碳排放计算标准》
- 四级人工智能训练师(中级)职业技能等级认定考试题及答案
- GB/T 33761-2024绿色产品评价通则
- 地下停车场充电桩技术方案建议书
- 幼儿园设施设备安全教育
评论
0/150
提交评论