版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A. B.C. D.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012 B.8×1013 C.8×1014 D.0.8×10133.某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班考试成绩的众数是28分C.该班考试成绩的中位数是28分D.该班考试成绩的平均数是28分4.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.5.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数 B.中位数 C.众数 D.方差6.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等8.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.129.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.2410.函数的图象上有两点,,若,则()A. B. C. D.、的大小不确定二、填空题(本大题共6个小题,每小题3分,共18分)11.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.12.已知x1,x2是方程x2-3x-1=0的两根,则=______.13.在中,::1:2:3,于点D,若,则______14.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.15.64的立方根是_______.16.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.三、解答题(共8题,共72分)17.(8分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2(i)△EAF≌△BAF(判定依据是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2为②:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为③:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).18.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离;(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?19.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.20.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?21.(8分)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22.(10分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-2(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取54(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.23.(12分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.24.的除以20与18的差,商是多少?
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.2、B【解析】80万亿用科学记数法表示为8×1.故选B.点睛:本题考查了科学计数法,科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3、D【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.【详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故选项D错误,符合题意.故选D.【点睛】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.4、B【解析】
由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.5、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、B【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.7、B【解析】
①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A错误,轿车在行驶过程中进行了提速,故选项B正确,货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,设货车对应的函数解析式为y=kx,5k=300,得k=60,即货车对应的函数解析式为y=60x,设CD段轿车对应的函数解析式为y=ax+b,,得,即CD段轿车对应的函数解析式为y=110x-195,令60x=110x-195,得x=3.9,即货车出发3.9小时后,轿车追上货车,故选项C错误,故选:B.【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式8、B【解析】
先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.9、D【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.10、A【解析】
根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-=-=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、14s或38s.【解析】试题解析:分两种情况进行讨论:如图:旋转的度数为:每两秒旋转如图:旋转的度数为:每两秒旋转故答案为14s或38s.12、﹣1.【解析】试题解析:∵,是方程的两根,∴、,∴===﹣1.故答案为﹣1.13、2.1【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.14、1-1.【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.【详解】将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案为:1-1.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.15、4.【解析】
根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.16、4.【解析】
只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.【详解】解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.故答案为:4【点睛】本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)三、解答题(共8题,共72分)17、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根据题意画图即可.【详解】解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四边形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四边形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所画正方形CHIJ见右图.18、(Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】(Ⅰ)在中,,≈0.74,∴.答:发射台与雷达站之间的距离约为.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.19、(1)0;(1)a+2a+1,3【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.20、1860分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收问卷的概率是;(4)第4天收回问卷获奖率,第6天收回问卷获奖率.∵,∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.21、今年妹妹6岁,哥哥10岁.【解析】
试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:解得:.答:今年妹妹6岁,哥哥10岁.考点:二元一次方程组的应用.22、(1)抛物线的解析式为:y=1(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣32(3)M的坐标为(1,﹣83【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴抛物线的解析式为:y=1答:抛物线的解析式为:y=1(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=54时,5t2﹣8t+4=54,得20t解得t=12,t=11此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣32若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣32即R(3,﹣32代入y=1∴这时存在R(3,﹣32(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣32)代入,y=左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣32答:存在,R点的坐标是(3,﹣32(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,理由是:∵MA=M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 励志的人生格言摘录76条
- 不孤独的作文7篇
- -新编小学一年级语文下册教学计划
- 十一月再见十二月你好说说
- 新员工销售计划书范文
- 学校食品安全员管理制度
- 2024年超滤装置项目资金筹措计划书代可行性研究报告
- 【初中数学课件】初中数学总复习专题训练-开放性问题研究课件
- 《民用净化技术》课件
- 【语文课件】成语谜语
- 《雷达原理与系统》课件
- 2024年日历表(空白)(一月一张-可编辑做工作日历)
- 福建省厦门市2023-2024学年九年级上学期期末化学试题
- 精神分裂症规范化治疗课件
- (医学课件)热性惊厥
- 人教版 六级上册数学 四单元《比》(省级作业设计大赛作品)
- 了解并遵守公司的规章制度和道德标准
- 2023-2024学年北京海淀区八一学校高一(上)期中数学试题及答案
- 死因监测工作管理制度及工作流程
- 2024届甘肃省兰州市西北师大附中物理高一第一学期期中教学质量检测试题含解析
- 你当像李白长风破浪
评论
0/150
提交评论