版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——定积分(与应用)习题及答案第五章定积分
(A层次)
?2031.?sinxcosxdx;2.?x0a2a?xdx;3.?223dxx211?x2;
4.?7.?1?1xdx5?4xdx;5.?4dxx?11;6.?341dx1?x?1;
e21?dx;8.?2;9.?1?cos2xdx;
?2x?2x?20x1?lnx032xsinxdx;10.?xsinxdx;11.?2?4cosxdx;12.?4
?5x?2x2?1???2??4454lnx1xdx13.??;14.;15.dxxarctgxdx;?2?10sinxx4?3?016.?2e2xcosxdx;17.??3?2?xsinx?dx;18.?sin?lnx?dx;01?e?019.?2?cosx?cosxdx;20.?44?sinxxsinxdx;dx;21.?01?cos2x1?sinx22.?1202??1?x1?xxlndx;23.?dx;24.?2lnsinxdx;40??1?x1?x?25.?(B层次)
??0?dxdx???0?。
1?x21?x????1.求由?edt??costdt?0所决定的隐函数y对x的导数
00ytxdy。dx2.当x为何值时,函数I?x???te?tdt有极值?
2x03.
dcosxcos?t2dt。?dxsinx???x?1,x?12?4.设f?x???12,求?f?x?dx。
0x,x?1??21
5.lim2??arctgtdt?0xx???x?12。
?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。
0?其它?0,?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex,求?f?x?1?dx。
028.lim1n??n2?n?n2n???n2。
kn2kn?9.求lim?n??k?1e。
1n?ne10.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。
011.若?2ln2xdte?1?12t??61,求x。
12.证明:2e???212e?xdx?2。
2???x?a?2?2x13.已知lim??4xedx,求常数a。??ax???x?a??2??1?x,14.设f?x????x??e,xx?0x?0,求?f?x?2?dx。
1315.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。
2?016.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最
13小。
17.已知f?x??e?x2,求?f??x?f???x?dx。
02100118.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。19.?
?0?f?cosx?cosx?f??cosx?sinx?dx。
22
20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求
0x??f???0?。(C层次)
1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知
?10f?x?dx?b?1??1?,求????f0?4f?f1g?x?dx。?????a6??2??2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,
b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证
?b?a?f?a???af?x?dx??b?a?f?b??f?a?。
b24.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,试证f?x??1bf??x?dx(a?x?b)。?a211005.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,
0?x?1,使f?x??4。
6.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。4x7.设f?x?在
4b?a,b?上连续可微,若f?a??f?b??0,则
f?x?dx?maxf??x?。??b?a?2aa?x?b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?k?0baf?x?k??f?x?dx
k?f?b??f?a?。
9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,
0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。
3
10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。
0111.若f???x?在?0,??连续,f?0??2,f????1,证明:
??f?x??f???x??sinxdx?3。
0?12.求曲线y???t?1??t?2?dt在点(0,0)处的切线方程。
0x13.设f?x?为连续函数,对任意实数a有
????a?asinxf?x?dx?0,求证
f?2??x??f?x?。
14.设方程2x?tg?x?y???x?y0d2ysectdt,求2。
dx215.设f?x?在?a,b?上连续,求证:
h?0lim?1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)h?ax2?1?x?016.当x?0时,f?x?连续,且满足?f?t?dt?x,求f?2?。
17.设f?x?在?0,1?连续且递减,证明
??f?x?dx??f?x?dx,其中???0,1?。
001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:
0xF?2a??2F?a??1。
19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程
axg?x??f?b??0至少有一个根。b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?内有且仅有一个根。21.设f?x?在?0,2a?上连续,则?2a01dt,证明:
f?t?f?x?dx???f?x??f?2a?x??dx。
0a22.设f?x?是以?为周期的连续函数,证明:
?0?sinx?x?f?x?dx??0?2x???f?x?dx。
4
2??23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使
??af?x?dx??f?x?dx??1b1bf?x?dx。?a2x1f?u?1?24.证明?lnf?x?t?dt??lndu??lnf?u?du。
000f?u?25.设f?x?在?a,b?上连续且严格单调增加,则?a?b??f?x?dx?2?xf?x?dx。
aabb26.设f?x?在?a,b?上可导,且f??x??M,f?a??0,则?f?x?dx?abM?b?a?2。227.设f?x?四处二阶可导,且f???x??0,又u?t?为任一连续函数,则
1af?u?t??dt??0a?1a?f??u?t?dt?,?a?0?。?a0?b?a?b?28.设f?x?在?a,b?上二阶可导,且f???x??0,则?f?x?dx??b?a?f??。a?2?29.设f?x?在?a,b?上连续,且f?x??0,?f?x?dx?0,证明在?a,b?上必有
abf?x??0。
30.f?x?在?a,b?上连续,且对任何区间??,????a,b?有不等式
???f?x?dx?M???1??(M,?为正常数),试证在?a,b?上f?x??0。
第五章定积分
(A)
?1.?2sinxcos3xdx
0?解:原式???a0202314cosxdx??cosx?
4403?2.?x2a2?x2dx
解:令x?asint,则dx?acostdt当x?0时t?0,当x?a时t???2
原式??2a2sin2t?acost?acostdt
05
a4?444a?02sin2tdt?82?st?dt??1?co420??2a?a1???sin4t?a4
828416043.?3dxx211?x2
解:令x?tg?,则dx?sec2?d?当x?1,3时?分别为
2sec?原式???32d?
tg?sec?4??,43????3?sin??dsin?
?24??2?4.?1?1233xdx5?4x
1512?u,dx??udu442解:令5?4x?u,则x?当x??1,1时,u?3,1原式??5.?4115?u2du?3861??dxx?11
解:令x?t,dx?2tdt
当x?1时,t?1;当x?4时,t?2原式??212dt?2tdt?2?2??dt??111?t?1?t??222?2t1?ln?1?t?1?2?2ln
3??6.?341dx1?x?1
6
解:令1?x?u,则x?1?u2,dx??2udu当x?31,1时u?,04201?2uu?1?1原式??1du?2?2du?1?2ln2
0u?1u?127.?e2dxx1?lnxe211
11?lnxe21e21解:原式??dlnx??11?lnxd?1?lnx?
?21?lnx8.?dx
?2x2?2x?20?23?2
解:原式??0?2dx1??x?1?2?arctg?x?1??2
0?arct??g1???arct1g?4??4??2
9.??01?cos2xdx
?0解:原式??2cos2xdx?2?cosxdx
0??2?coxdxs?2???coxs?dx
202???????2?sin?2?sinx0x???222??10.?x4sinxdx
???解:∵x4sinx为奇函数
∴?x4sinxdx?0
????11.?2?4cos4xdx
?2??420解:原式?4?2?2cosxdx?2?0?2cosx?dx
227
??2?20?1?cos2x??202dx?2?2?1?2cos2x?cos22x?dx
0?2?2?2x0?cos2xdx????20?1?cos4x?dx
2???2sin2x0?1???2cos4xd4x240???2313???sin4x??
2420x3sin2xdx12.?4?5x?2x2?15x3sin2x解:∵4为奇函数
x?2x2?1x3sin2xdx?0∴?4?5x?2x2?1513.??3xdx2sinx4??解:原式????3xdctgx
4??3x???3ctgxdx??xctg?44??13?3???lnsin?x????49?4???13?32???ln??ln???49?22???13?13???ln????49?22??14.?4lnxx1dx
4解:原式?2?lnxdx
18
?2?xlnx???11?44xdlnx?
??41???2?4ln2??xdx?
1x??12?8ln2?2?xdx
14??8ln2?415.?xarctgxdx
0111解:原式??arctgxdx2
2023x1?1?2??xarctgx??dx?2023?1?x???8?1111dxdx?2?02?01?x21111??x?arctgx82023????4?1216.?2e2xcosxdx
0?解:原式??2e2xdsinx
0??x?e2xsin?20??2sinx?2e2xdx
0?x?e?2?2e2xdcos0??2x0?x2?2?2cosx?2e2xdx?e?2ecos0?xdx?e?2?4?2e2xcos
0??故?2e2xcosxdx?01?e?25??17.?
2?xsinx?dx0?9
解:原式????xsinx?0?2dx??x20?1?cos2xdx21?21?2xdx?xcos2xdx??0022?1?x36?01?2xdsin2x?04??1?2?xsin2x??sin2x?2xd?x?0?0??64??3??36?1?xdco2sx?04?1??3????xco2sx0??co2sxdx????0??6464??318.?sin?lnx?dx
1e1e解:原式?xsin?lnx?1??xcos?lnx??dx
1xe?esin1??cos?lnx?dx
1e1?e??esin1??xcos?lnx?1??xsin?lnx??dx?
1x??e?esin1?ecos1?1??sin?lnx?dx
1e故?sin?lnx?dx?1ee?sin1?cos1?1?2?19.?2?cosx?cos3xdx
?4??解:原式??2?cosx1?cos2xdx
4????0??4coxs??sinx?dx??2coxssinxdx00??33?2??2?2s?2?????coxs?2????cox?33?????04442??
33
10
?20.?40sinxdx
1?sinx?解:原式??40sinx?1?sinx?dx21?sinxx?sin2???4??tgx?dx20cosx???????40dcoxs2??4secx?1dx20cosx????14?4???tgx?x?02??2?coxs04?21.??0xsinxdx21?cosx解:令x??2?t,则
???????t?sin??t????2??2?原式????2?dt
???21?cos2??t??2?tcots?dt????22221?sint1?sint2???cots????22.?xln120232?cots?2??sgindt??arctt?0241?sint1?xdx1?x120解:原式??1?x?x2lnd?1?x??212????12x1?xx1?x1?x??1?x???1??ln??2??dx2023?x021?x?1?x?221xdx?ln3??2ln208x?1111
1dx?ln3??2dx??22
00x?1811111x?1?ln3??ln
822x?10???1213?ln3281?x2dx23.???1?x4????1?x2dx?2?01?x4解:原式??01?12xdx1?x22x?2???011???x???2x????21??d?x??
x??1x?2xarctg?22?2?
0??24.?2lnsinxdx
0xx??解:原式??2ln?2sin?cos?dx令x?2t2?4?ln2?lnsint?lncost?dt
0022???????ln2?2??4lnsintdt??4lncotdts?
002?????
t??u2??????ln2?2??4lnsintdt???2lnsinudu?
024????2??ln2?2?2lnsintdt
0故?2lnsinxdx??0?2ln2
25.?
??0?dx1?x21?x???????0?
12
11解:令x?,则dx??2dt
tt1dt20??t?dtt原式??????1?t21?t?01?t21?t???2tt?????∴2???0?????dxdxx?dx????2?2?2?001?x1?x1?x1?x1?x1?x?????????????故?
????01???dx?arctgx?2023?x0?dx??2?41?x1?x???(B)
1.求由?etdt??costdt?0所决定的隐函数y对x的导数
00yxdy。dx解:将两边对x求导得
dy?cosx?0dxdycosx??y∴dxeey2.当x为何值时,函数I?x???te?tdt有极值?
2x0解:I??x??xe?x,令I??x??0得x?0
2当x?0时,I??x??0当x?0时,I??x??0
∴当x?0时,函数I?x?有微小值。
dcosx2cos?tdt。?sinxdxcostd?a22?cos?tdt?cos?tdt解:原式??a???sinx?dx?cosxd?sinx2??cos?tdt??cos?t2dt???a?a?dx?3.
????????????22s?sinx??sinx??co?scosx??cosx???co?13
2??co?ssincoxs?co?sco2sx??sinx?22??co?ssinxcoxs?sinxco?s??sinx2??sinx?coxs?cos?sinx
???????????x?1,x?12?4.设f?x???12,求?f?x?dx。
0x,x?1??2解:?f?x?dx???x?1?dx??00212112xdx2218?1???x2?x??x3?
?2?061315.lim2??arctgtdt?0xx???xx?12??arctgtdt?型?0?2。
解:limx???x?12x???lim?arctgx?21?12x?122x2??
?limx???x2?1?arct?gx?limx???x2x1?1arct2gx2x
x??1?22?lim1?2?arctgx??
x???4x?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。
0?0,其它?解:当x?0时,??x???f?t?dt??0dt?0
00xx当0?x??时,??x???x11?cosxsintdt?022x?x当x??时,??x???f?t?dt??f?t?dt??f?t?dt??00?0?x1sintdt??0dt?1?2当?0时?0,??1故??x????1?cosx?,当0?x??时。
?2当x??时??1,
14
?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex?1,当x?1时??x解:f?x?1????1,当x?1时??1?ex?1,求?f?x?1?dx。
02
?202dx1f?x?1?dx????11??x?1?dx01?ex?112dx1?ex?1?ex?1??dx?1???x?1?01x1?e1?1?ln1?ex?1?ln?1?e?8.lim1n??n2??10?ln2
?n?2n???n2。
??12n?1?解:原式?lim??????n??nn??n?n?lim?n??i?1n1i12???xdx?
0nn39.求lim?n??k?1nekn2kn。
n?nen解:原式?lim?n??k?1ekn2kn1?e1nex?x1dx?arctge?arctg?e??001?e2x4110.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。
01解:令?f?t?dt?A,则f?x??x?2A,
0115
从而?f?x?dx???x?2A?dx?00111?2A2即A?11?2A,A??22∴f?x??x?111.若?2ln2xdte?1t??6,求x。
解:令et?1?u,则t?ln1?u2,dt?当t?2ln2时,u?3当t?x时,u?ex?1∴?2ln2x??2udu21?udte?1t??3ex?1?2udu?2arctgu1?u2u?3ex?1
?????2??arctgex?1??
?3?6从而x?ln212.证明:2e?121???212e?xdx?2。
2?11??x2证:考虑??,?上的函数y?e,则
22??y???2xe?x,令y??0得x?0
2?1?当x???,0?时,y??0
2???1?当x??0,?时,y??0
2??∴y?e?x2在x?0处取最大值y?1,且y?e?121?212?x21?x2在x??12处取最小值e?12
1故??212edx??edx???2121dx
16
即2e?121???212e?xdx?2。
x2???x?a?2?2x13.已知lim????a4xedx,求常数a。
x???x?a??2a???2a解:左端?lim?1???e
x????x?a?右端????ax??2xe?d??2x???2?2x??a??a?2x2de?2x
2?2x??2??xe???????a2xe?2xdx??
??2a2e?2a?2?axd?e2x
??a?2x?2a2e?2a?2??xe?????ae?2xdx??
??2a2?2a?1e?2a∴2a2?2a?1e?2a?e?2a解之a?0或a??1。
2??1?x,14.设f?x????x??e,????x?0x?0,求?f?x?2?dx。
13解:令x?2?t,则
?31f?x?2?dx??f?t?dt??1?tdt??e?tdt?2?1?1010??171?3e15.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。
2?0?解:令2x?t,且f?x???1?sin2x??sin2x
?
?20xf??2x?dx???0t11?f??t?dt??tf??t?dt2240?1?1?????????tdft?tft?ftdt?00???4?04??1?2tsin2t0?1?sint??0??0???4????16.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最
13小。
17
解:当?f?x?dx最小,即??ax?b?lnx?dx最小,由f?x??ax?b?lnx?0知,
1133y?ax?b在y?lnx的上方,其间所夹面积最小,则y?ax?b是y?lnx的切线,
而y??111,设切点为?x0,lnx0?,则切线y??x?x0??lnx0,故a?,xx0x0b?lnx0?1。
3?a?于是I???ax?b?lnx?dx??x2?bx???lnxdx
11?2?133?4a?2?1?lna???lnxdx
13??4?令Ia21?0得a?a2从而x0?2,b?ln2?1
???又Ia32?0,此时?1f?x?dx最小。a2217.已知f?x??e?x,求?f??x?f???x?dx。
01解:f??x???2xe?x
2
?f??x?f???x?dx??011012f??x?df??x???f??x??
2023221??x????2xe??2??2e?2
018.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。
0021解:设?f?x?dx?A,?f?x?dx?B,则f?x??x2?Bx?2A
0012∴A??f?x?dx??x2?Bx?2Adx?11?B?2A
0032228∴B??f?x?dx??x2?Bx?2Adx??2B?4A
00314解得:A?,B?,于是
3342f?x??x2?x?
3311????19.?
?0?f?cosx?cosx?f??cosx?sinx?dx。
218
解:原式??f?cosx?cosxdx??sinxf??cosx?dcosx
00????f?coxs?coxdxs?sinxf?coxs?0??f?coxs?coxsdx?00???0
20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求
0x??f???0?。
?x?解:limx0x?02?t2f???t?dtx3x0?3??limx?0x02xf???t?dtx2
?limx?02?f???t?dtx?lim2xf?????????0,x??x?0x?2f???0??1故f???0??
(C)
1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知
12?10b?1??1?f?x?dx??f?0??4f???f?1??,求?g?x?dx。
a6??2??解:设x??b?a?t?a,则
I??g?x?dx??g??b?a?t?a??b?a?dt
a0b1??b?a??g??b?a?t?a?dt
01令g??b?a?t?a??f?t?
?1??b?a?于是f?0??g?a?,f???g??,f?1??g?b?
22????由已知得I??b?a??b?a?????ga?4g?gb???6?2????2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,
19
b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?24证:由泰勒公式
f?x??f?x0??f??x0??x?x0??f??????x?x0?22!其中x0,x??a,b?,?位于x0与x之间。两边积分得:
f?????2?x?x0?dxa2!f?????3b?baf?x?dx??f?x0?dx??f??x0??x?x0?dx??aabb??b?a?f?x0??令x0?
f??x0??b?x0?2??a?x0?2?2??6??b?x?03??a?x0?
?a?b,则2?ba22?a?ba?b1a?ba?b?????????f?x?dx??b?a?f???f?????b????a???
2??2???2??2?2????33f???????a?b??a?b?????a????b?6?22??????????a?b?13??b?a?f????b?a?f?????,???a,b?。
?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证
?b?a?f?a???af?x?dx??b?a?f?b??f?a?。
b2证明:当x??a,b?时,由f??x??0,f???x??0知f?x?是严格增及严格凹的,从而f?x??f?a?及f?x??f?a??bbaaf?b??f?a??x?a?b?a故?f?x?dx??f?a?dx??b?a?f?a?
?bab?f?b??f?a???f?x?dx???f?a??x?a??dx
ab?a??f?b??f?a?1?b?a?2
b?a2f?b??f?a???b?a?
2??b?a?f?a??4.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,
20
1b试证f?x???f??x?dx(a?x?b)。
2a证明:由于在?a,b?上f??x?可积,故有
?baf??x?dx??f??t?dt??f??t?dt
axxaxb而f?x???f??t?dt,?f?x???f??t?dt
xbb1?x???ftdt?f??t?dt????x?a?2?b1x1bf?x????f??t?dt??f??t?dt???f??t?dt
?x?a?2a2?于是f?x??5.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,
00110?x?1,使f?x??4。
证:假设f?x??4,x??0,1?
由已知?f?x?dx?0,?xf?x?dx?1,得
00111??xf?x?dx?011?111???fxdx?x???f?x?dx??0022????x?01111f?x?dx?4?x?dx
0221??11???1?2?4????x?dx??1?x??dx??1
02???2???21111f?x?dx?4?x?dx
022故?x?01从而?x?01?f?x??4?dx?02∴f?x??4?0
由于f?x?在?0,1?连续,则f?x??4或f?x???4。从而?f?x?dx?4或?4,
01这与?f?x?dx?0矛盾。故f?x??4。
016.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。x421
1x2解:令x?t?u,则F?x???f?u?du,显然F??x??xfx2
2023??F?x?F??x?fx2fx2?f?0?11?于是lim4?lim。???lim?lim?f0?2x?0xx?04x3x?04x2x?0444x?0??????7.设f?x?在
4b?a,b?上连续可微,若f?a??f?b??0,则
f?x?dx?maxf??x?。??b?a?2aa?x?b?a?b??a?b?证:因f?x?在?a,b?上连续可微,则f?x?在?a,,b?上均满足拉?和?22????格朗日定理条件,设M?maxf??x?,则有
a?x?b?baf?x?dx??a?b2aa?b2af?x?dx??a?bf?x?dx
2bb????f?a??f???1??x?a?dx??a?bf?b??f???2??x?b?dx
2a?b2af???1??x?a?dx??a?bf???2??x?b?dx
2a?b2ab?M?故
4x?adx?M?a?bx?bdx?2bM?b?a?24f?x?dx?M。??b?a?2abak?0b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?f?x?k??f?x?dx
k?f?b??f?a?。
证:?baf?x?k??f?x?1b1bdx??f?x?k?dx??f?x?dx
kkakabb?ka?ka令x?k?u,则?f?x?k?dx??于是?bf?u?du
f?x?k??f?k?1b?k1bdx??f?x?dx??f?x?dx
akka?kka1b?k1a?kf?x?dx??f?x?dx??kbkabf?x?k??f?x?1b?k1a?kdx?lim?f?x?dx?lim?f?x?dx故lim?bak?0ak?0k?0kkk
22
?f?b??f?a?
9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,
0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。
证:(1)F??x???
f?x?为奇函数?x0??x?3t?f?t?dtt??u??0???x?3u?f??u?du
xx?0??x?3u?f?u?du???0?x?3u?f?u?du??F?x?
x∴F?x?为奇函数。
?xx??(2)F??x??x?f?t?dt?3?tf?t?dt??0?0???f?t?dt?xf?x??3xf?x?
0x??f?t?dt?2xf?x?
0x???f?t??f?x??dt?xf?x?
0x由于f?x?是奇函数且单调增加,当x?0时,f?x??0,
??f?t??f?x??dt?0??0?t?x?,故F??x??0,x??0,???,即F?x?在?0,???上
0x单调减少。
10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。
01解:记??f?x??xf?xt??dt?C,则
01
?0?f?x??xf?xt??dt?f?x???0f?u?du?C
1x由f?x?可微,于是f??x??f?x??0
解之f?x??ke?x(k为任意常数)
11.若f???x?在?0,??连续,f?0??2,f????1,证明:
??f?x??f???x??sinxdx?3。
0?解:因?f???x?sinxdx??sinxdf??x?
00??23
?sinxf??x???0??0f??x?coxsdx????0f??x?coxsdx????coxsd?fx???f?x?coxs??00??0f?x?sinxdx?f????f?0????0f?x?sinxdx?1?2????0f?x?sinxdx?3??0f?x?sinxdx所以??0?f?x??f???x??sinxdx?3。
12.求曲线y??x0?t?1??t?2?dt在点(0,0)处的切线方程。
解:y???x?1??x?2?,则y??0??2,故切线方程为:y?0?2?x?0?,即y?2x。
13.设f?x?为连续函数,对任意实数a有
???a??asinxf?x?dx?0,f?2??x??f?x?。
证:两边对a求导
sin???a?f???a????1?sin???a?f???a??0即f???a??f???a?
令a???x,即得f?2??x??f?x?。14.设方程2x?tg?x?y???x?y2d20sectdt,求ydx2。
解:方程两边对x求导,得
2?se2c?x?y??1?y???se2c?x?y??1?y??
从而y??1?cos2?x?y??sin2?x?y?
y???2sin?x?y?co?sx?y??1?y???2sin?x?y?co3s?x?y?15.设f?x?在?a,b?上连续,求证:
24
求证
1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)limh?0?h?a证:设F?x?为f?x?的原函数,则左边?lim?h?01?F?x?h??F?a?h??F?x??F?a??h?F?x?h??F?x?F?a?h??F?a???lim??h?0??hh???f?x??f?a??右边。16.当x?0时,f?x?连续,且满足?解:等式两边对x求导,得fx2?1?x?2x?3x2?1令x2?1?x??2得x?1将x?1代入得:f?2??5?1故f?2??1。5x2?1?x?0f?t?dt?x,求f?2?。
????17.设f?x?在?0,1?连续且递减,证明
??f?x?dx??f?x?dx,其中???0,1?。
001?证:??f?x?dx?????f?x?dx??f?x?dx??
01?1?0??则??f?x?dx??f?x?dx
001????f?x?dx????1??f?x?dx
?01????1???f??1??????1?f??2?,?1???,1?,?2??0,???????1??f??1??f??2??由于f?x?递减,f??1??f??2?故??f?x?dx??f?x?dx?0
001?即??f?x?dx??f?x?dx。
001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:
0x25
F?2a??2F?a??1。
证:F?2a??2F?a?????2a02a0f?t?f??2a?t?dt?2?f?t?f??2a?t?dt
0a0af?t?f??2a?t?dt??f?t?f??2a?t?dtf?t?f??2a?t?d?2a?t???f?t?f??2a?t?dt
02a2aaa???2aa??f?t?f?2a?t?a??f??t?f??2a?t???f?t?f??2a?t?dt
0a在第一个积分中,令2a?t?u,则
?2aaf??t?f?2a?t?dt??f?u?f??2a?u?du
02a2a而?f?t?f?2a?t?a??f?2a?f?0??f故F?2a??2F?a??1
?a??1
19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程
axg?x??f?b??0至少有一个根。b?a证:由积分中值定理,存在???a,b?使f?b???g?t?dt?g????b?a?
ab即g????f?b??0b?a故?是方程g?x??f?b??0的一个根。b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?内有且仅有一个根。证:(1)F??x??f?x??ab1dt,证明:
f?t?1?2??fx(2)F?a???b1dt?0,F?b???f?t?dt?0
af?t?又F?x?在?a,b?连续,由介值定理知F?x??0在?a,b?内至少有一根。又F??x??0,则F?x?单增,从而F?x??0在?a,b?内至多有一根。
26
故F?x??0在?a,b?内有且仅有一个根。21.设f?x?在?0,2a?上连续,则?证:?2a02a0f?x?dx???f?x??f?2a?x??dx。
0af?x?dx??f?x?dx??0a2aaf?x?dx
令x?2a?u,dx??du,则
?2aaf?x?dx??f?2a?u?du??f?2a?x?dx
00aa故?2a0f?x?dx???f?x??f?2a?x??dx
0a22.设f?x?是以?为周期的连续函数,证明:
??sinx?x?f?x?dx???2x???f?x?dx。
002??证:?2?0?sinx?x?f?x?dx
?2?0???sinx?x?f?x?dx??令x???u,则
??sinx?x?f?x?dx
???u????u?f???u?du???sinx?x?f?x?dx??0?sin?02?2?????u???sinu?f?u?du(∵f?x?以?为周期)故?0?sinx?x?f?x?dx??0?2x???f?x?dx
b?23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使
??af?x?dx??f?x?dx??xbax1bf?x?dx。?a2证:令F?x???f?t?dt??f?t?dt由于x??a,b?时,f?x??0,故F?a????f?t?dt?0
abF?b???f?t?dt?0
ab故由零点定理知,存在一点???a,b?,使得F????0即?f?t?dt??f?t?dt?0
a?b?27
?f?x?dx???f?x?dx
ab?b又?f?x?dx??f?x?dx??f?x?dx?2?f?x?dx
aa?b??a故?f?x?dx??f?x?dx?a?b?1bf?x?dx。2?a1f?u?1?du??lnf?u?du。0f?u?24.证明?lnf?x?t?dt??ln001x证:设x?t?u?1,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遗传算法流程图
- 教育部学科分类与代码(全部)
- 2024购销合同下载范文
- 2024临时工解聘协议书临时工聘用合同协议书
- 自然资源安全生产
- 规划课题申报范例:“双高校”绩效评价研究(附可修改技术路线图)
- 深圳大学《知识产权法学》2021-2022学年期末试卷
- 副主任医师定期考核述职报告范文(7篇)
- 关于班组长安全承诺书3篇
- 军训决心书(集锦15篇)
- 食用菌现代高效农业示范园区建设项目建议书
- 东营港加油、LNG加气站工程环评报告表
- 2024年日历(打印版每月一张)
- 车用动力电池回收利用 管理规范 第2部分:回收服务网点征求意见稿编制说明
- 新剑桥少儿英语第六册全册配套文本
- 科学预测方案
- 职业生涯规划网络与新媒体专业
- T-WAPIA 052.2-2023 无线局域网设备技术规范 第2部分:终端
- 市政管道开槽施工-市政排水管道的施工
- 初中八年级英语课件Reading Giant pandas-“江南联赛”一等奖2
- 人工智能在教育行业中的应用与管理
评论
0/150
提交评论