定积分(与应用)习题及答案_第1页
定积分(与应用)习题及答案_第2页
定积分(与应用)习题及答案_第3页
定积分(与应用)习题及答案_第4页
定积分(与应用)习题及答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——定积分(与应用)习题及答案第五章定积分

(A层次)

?2031.?sinxcosxdx;2.?x0a2a?xdx;3.?223dxx211?x2;

4.?7.?1?1xdx5?4xdx;5.?4dxx?11;6.?341dx1?x?1;

e21?dx;8.?2;9.?1?cos2xdx;

?2x?2x?20x1?lnx032xsinxdx;10.?xsinxdx;11.?2?4cosxdx;12.?4

?5x?2x2?1???2??4454lnx1xdx13.??;14.;15.dxxarctgxdx;?2?10sinxx4?3?016.?2e2xcosxdx;17.??3?2?xsinx?dx;18.?sin?lnx?dx;01?e?019.?2?cosx?cosxdx;20.?44?sinxxsinxdx;dx;21.?01?cos2x1?sinx22.?1202??1?x1?xxlndx;23.?dx;24.?2lnsinxdx;40??1?x1?x?25.?(B层次)

??0?dxdx???0?。

1?x21?x????1.求由?edt??costdt?0所决定的隐函数y对x的导数

00ytxdy。dx2.当x为何值时,函数I?x???te?tdt有极值?

2x03.

dcosxcos?t2dt。?dxsinx???x?1,x?12?4.设f?x???12,求?f?x?dx。

0x,x?1??21

5.lim2??arctgtdt?0xx???x?12。

?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。

0?其它?0,?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex,求?f?x?1?dx。

028.lim1n??n2?n?n2n???n2。

kn2kn?9.求lim?n??k?1e。

1n?ne10.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。

011.若?2ln2xdte?1?12t??61,求x。

12.证明:2e???212e?xdx?2。

2???x?a?2?2x13.已知lim??4xedx,求常数a。??ax???x?a??2??1?x,14.设f?x????x??e,xx?0x?0,求?f?x?2?dx。

1315.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。

2?016.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最

13小。

17.已知f?x??e?x2,求?f??x?f???x?dx。

02100118.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

22

20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求

0x??f???0?。(C层次)

1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知

?10f?x?dx?b?1??1?,求????f0?4f?f1g?x?dx。?????a6??2??2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b24.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,试证f?x??1bf??x?dx(a?x?b)。?a211005.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,

0?x?1,使f?x??4。

6.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。4x7.设f?x?在

4b?a,b?上连续可微,若f?a??f?b??0,则

f?x?dx?maxf??x?。??b?a?2aa?x?b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?k?0baf?x?k??f?x?dx

k?f?b??f?a?。

9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,

0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。

3

10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。

0111.若f???x?在?0,??连续,f?0??2,f????1,证明:

??f?x??f???x??sinxdx?3。

0?12.求曲线y???t?1??t?2?dt在点(0,0)处的切线方程。

0x13.设f?x?为连续函数,对任意实数a有

????a?asinxf?x?dx?0,求证

f?2??x??f?x?。

14.设方程2x?tg?x?y???x?y0d2ysectdt,求2。

dx215.设f?x?在?a,b?上连续,求证:

h?0lim?1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)h?ax2?1?x?016.当x?0时,f?x?连续,且满足?f?t?dt?x,求f?2?。

17.设f?x?在?0,1?连续且递减,证明

??f?x?dx??f?x?dx,其中???0,1?。

001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:

0xF?2a??2F?a??1。

19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程

axg?x??f?b??0至少有一个根。b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?内有且仅有一个根。21.设f?x?在?0,2a?上连续,则?2a01dt,证明:

f?t?f?x?dx???f?x??f?2a?x??dx。

0a22.设f?x?是以?为周期的连续函数,证明:

?0?sinx?x?f?x?dx??0?2x???f?x?dx。

4

2??23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使

??af?x?dx??f?x?dx??1b1bf?x?dx。?a2x1f?u?1?24.证明?lnf?x?t?dt??lndu??lnf?u?du。

000f?u?25.设f?x?在?a,b?上连续且严格单调增加,则?a?b??f?x?dx?2?xf?x?dx。

aabb26.设f?x?在?a,b?上可导,且f??x??M,f?a??0,则?f?x?dx?abM?b?a?2。227.设f?x?四处二阶可导,且f???x??0,又u?t?为任一连续函数,则

1af?u?t??dt??0a?1a?f??u?t?dt?,?a?0?。?a0?b?a?b?28.设f?x?在?a,b?上二阶可导,且f???x??0,则?f?x?dx??b?a?f??。a?2?29.设f?x?在?a,b?上连续,且f?x??0,?f?x?dx?0,证明在?a,b?上必有

abf?x??0。

30.f?x?在?a,b?上连续,且对任何区间??,????a,b?有不等式

???f?x?dx?M???1??(M,?为正常数),试证在?a,b?上f?x??0。

第五章定积分

(A)

?1.?2sinxcos3xdx

0?解:原式???a0202314cosxdx??cosx?

4403?2.?x2a2?x2dx

解:令x?asint,则dx?acostdt当x?0时t?0,当x?a时t???2

原式??2a2sin2t?acost?acostdt

05

a4?444a?02sin2tdt?82?st?dt??1?co420??2a?a1???sin4t?a4

828416043.?3dxx211?x2

解:令x?tg?,则dx?sec2?d?当x?1,3时?分别为

2sec?原式???32d?

tg?sec?4??,43????3?sin??dsin?

?24??2?4.?1?1233xdx5?4x

1512?u,dx??udu442解:令5?4x?u,则x?当x??1,1时,u?3,1原式??5.?4115?u2du?3861??dxx?11

解:令x?t,dx?2tdt

当x?1时,t?1;当x?4时,t?2原式??212dt?2tdt?2?2??dt??111?t?1?t??222?2t1?ln?1?t?1?2?2ln

3??6.?341dx1?x?1

6

解:令1?x?u,则x?1?u2,dx??2udu当x?31,1时u?,04201?2uu?1?1原式??1du?2?2du?1?2ln2

0u?1u?127.?e2dxx1?lnxe211

11?lnxe21e21解:原式??dlnx??11?lnxd?1?lnx?

?21?lnx8.?dx

?2x2?2x?20?23?2

解:原式??0?2dx1??x?1?2?arctg?x?1??2

0?arct??g1???arct1g?4??4??2

9.??01?cos2xdx

?0解:原式??2cos2xdx?2?cosxdx

0??2?coxdxs?2???coxs?dx

202???????2?sin?2?sinx0x???222??10.?x4sinxdx

???解:∵x4sinx为奇函数

∴?x4sinxdx?0

????11.?2?4cos4xdx

?2??420解:原式?4?2?2cosxdx?2?0?2cosx?dx

227

??2?20?1?cos2x??202dx?2?2?1?2cos2x?cos22x?dx

0?2?2?2x0?cos2xdx????20?1?cos4x?dx

2???2sin2x0?1???2cos4xd4x240???2313???sin4x??

2420x3sin2xdx12.?4?5x?2x2?15x3sin2x解:∵4为奇函数

x?2x2?1x3sin2xdx?0∴?4?5x?2x2?1513.??3xdx2sinx4??解:原式????3xdctgx

4??3x???3ctgxdx??xctg?44??13?3???lnsin?x????49?4???13?32???ln??ln???49?22???13?13???ln????49?22??14.?4lnxx1dx

4解:原式?2?lnxdx

18

?2?xlnx???11?44xdlnx?

??41???2?4ln2??xdx?

1x??12?8ln2?2?xdx

14??8ln2?415.?xarctgxdx

0111解:原式??arctgxdx2

2023x1?1?2??xarctgx??dx?2023?1?x???8?1111dxdx?2?02?01?x21111??x?arctgx82023????4?1216.?2e2xcosxdx

0?解:原式??2e2xdsinx

0??x?e2xsin?20??2sinx?2e2xdx

0?x?e?2?2e2xdcos0??2x0?x2?2?2cosx?2e2xdx?e?2ecos0?xdx?e?2?4?2e2xcos

0??故?2e2xcosxdx?01?e?25??17.?

2?xsinx?dx0?9

解:原式????xsinx?0?2dx??x20?1?cos2xdx21?21?2xdx?xcos2xdx??0022?1?x36?01?2xdsin2x?04??1?2?xsin2x??sin2x?2xd?x?0?0??64??3??36?1?xdco2sx?04?1??3????xco2sx0??co2sxdx????0??6464??318.?sin?lnx?dx

1e1e解:原式?xsin?lnx?1??xcos?lnx??dx

1xe?esin1??cos?lnx?dx

1e1?e??esin1??xcos?lnx?1??xsin?lnx??dx?

1x??e?esin1?ecos1?1??sin?lnx?dx

1e故?sin?lnx?dx?1ee?sin1?cos1?1?2?19.?2?cosx?cos3xdx

?4??解:原式??2?cosx1?cos2xdx

4????0??4coxs??sinx?dx??2coxssinxdx00??33?2??2?2s?2?????coxs?2????cox?33?????04442??

33

10

?20.?40sinxdx

1?sinx?解:原式??40sinx?1?sinx?dx21?sinxx?sin2???4??tgx?dx20cosx???????40dcoxs2??4secx?1dx20cosx????14?4???tgx?x?02??2?coxs04?21.??0xsinxdx21?cosx解:令x??2?t,则

???????t?sin??t????2??2?原式????2?dt

???21?cos2??t??2?tcots?dt????22221?sint1?sint2???cots????22.?xln120232?cots?2??sgindt??arctt?0241?sint1?xdx1?x120解:原式??1?x?x2lnd?1?x??212????12x1?xx1?x1?x??1?x???1??ln??2??dx2023?x021?x?1?x?221xdx?ln3??2ln208x?1111

1dx?ln3??2dx??22

00x?1811111x?1?ln3??ln

822x?10???1213?ln3281?x2dx23.???1?x4????1?x2dx?2?01?x4解:原式??01?12xdx1?x22x?2???011???x???2x????21??d?x??

x??1x?2xarctg?22?2?

0??24.?2lnsinxdx

0xx??解:原式??2ln?2sin?cos?dx令x?2t2?4?ln2?lnsint?lncost?dt

0022???????ln2?2??4lnsintdt??4lncotdts?

002?????

t??u2??????ln2?2??4lnsintdt???2lnsinudu?

024????2??ln2?2?2lnsintdt

0故?2lnsinxdx??0?2ln2

25.?

??0?dx1?x21?x???????0?

12

11解:令x?,则dx??2dt

tt1dt20??t?dtt原式??????1?t21?t?01?t21?t???2tt?????∴2???0?????dxdxx?dx????2?2?2?001?x1?x1?x1?x1?x1?x?????????????故?

????01???dx?arctgx?2023?x0?dx??2?41?x1?x???(B)

1.求由?etdt??costdt?0所决定的隐函数y对x的导数

00yxdy。dx解:将两边对x求导得

dy?cosx?0dxdycosx??y∴dxeey2.当x为何值时,函数I?x???te?tdt有极值?

2x0解:I??x??xe?x,令I??x??0得x?0

2当x?0时,I??x??0当x?0时,I??x??0

∴当x?0时,函数I?x?有微小值。

dcosx2cos?tdt。?sinxdxcostd?a22?cos?tdt?cos?tdt解:原式??a???sinx?dx?cosxd?sinx2??cos?tdt??cos?t2dt???a?a?dx?3.

????????????22s?sinx??sinx??co?scosx??cosx???co?13

2??co?ssincoxs?co?sco2sx??sinx?22??co?ssinxcoxs?sinxco?s??sinx2??sinx?coxs?cos?sinx

???????????x?1,x?12?4.设f?x???12,求?f?x?dx。

0x,x?1??2解:?f?x?dx???x?1?dx??00212112xdx2218?1???x2?x??x3?

?2?061315.lim2??arctgtdt?0xx???xx?12??arctgtdt?型?0?2。

解:limx???x?12x???lim?arctgx?21?12x?122x2??

?limx???x2?1?arct?gx?limx???x2x1?1arct2gx2x

x??1?22?lim1?2?arctgx??

x???4x?1x?sinx,0?x??6.设f?x???2,求??x???f?t?dt。

0?0,其它?解:当x?0时,??x???f?t?dt??0dt?0

00xx当0?x??时,??x???x11?cosxsintdt?022x?x当x??时,??x???f?t?dt??f?t?dt??f?t?dt??00?0?x1sintdt??0dt?1?2当?0时?0,??1故??x????1?cosx?,当0?x??时。

?2当x??时??1,

14

?1,当x?0时??1?x7.设f?x????1,当x?0时??1?ex?1,当x?1时??x解:f?x?1????1,当x?1时??1?ex?1,求?f?x?1?dx。

02

?202dx1f?x?1?dx????11??x?1?dx01?ex?112dx1?ex?1?ex?1??dx?1???x?1?01x1?e1?1?ln1?ex?1?ln?1?e?8.lim1n??n2??10?ln2

?n?2n???n2。

??12n?1?解:原式?lim??????n??nn??n?n?lim?n??i?1n1i12???xdx?

0nn39.求lim?n??k?1nekn2kn。

n?nen解:原式?lim?n??k?1ekn2kn1?e1nex?x1dx?arctge?arctg?e??001?e2x4110.设f?x?是连续函数,且f?x??x?2?f?t?dt,求f?x?。

01解:令?f?t?dt?A,则f?x??x?2A,

0115

从而?f?x?dx???x?2A?dx?00111?2A2即A?11?2A,A??22∴f?x??x?111.若?2ln2xdte?1t??6,求x。

解:令et?1?u,则t?ln1?u2,dt?当t?2ln2时,u?3当t?x时,u?ex?1∴?2ln2x??2udu21?udte?1t??3ex?1?2udu?2arctgu1?u2u?3ex?1

?????2??arctgex?1??

?3?6从而x?ln212.证明:2e?121???212e?xdx?2。

2?11??x2证:考虑??,?上的函数y?e,则

22??y???2xe?x,令y??0得x?0

2?1?当x???,0?时,y??0

2???1?当x??0,?时,y??0

2??∴y?e?x2在x?0处取最大值y?1,且y?e?121?212?x21?x2在x??12处取最小值e?12

1故??212edx??edx???2121dx

16

即2e?121???212e?xdx?2。

x2???x?a?2?2x13.已知lim????a4xedx,求常数a。

x???x?a??2a???2a解:左端?lim?1???e

x????x?a?右端????ax??2xe?d??2x???2?2x??a??a?2x2de?2x

2?2x??2??xe???????a2xe?2xdx??

??2a2e?2a?2?axd?e2x

??a?2x?2a2e?2a?2??xe?????ae?2xdx??

??2a2?2a?1e?2a∴2a2?2a?1e?2a?e?2a解之a?0或a??1。

2??1?x,14.设f?x????x??e,????x?0x?0,求?f?x?2?dx。

13解:令x?2?t,则

?31f?x?2?dx??f?t?dt??1?tdt??e?tdt?2?1?1010??171?3e15.设f?x?有一个原函数为1?sinx,求?2xf??2x?dx。

2?0?解:令2x?t,且f?x???1?sin2x??sin2x

?

?20xf??2x?dx???0t11?f??t?dt??tf??t?dt2240?1?1?????????tdft?tft?ftdt?00???4?04??1?2tsin2t0?1?sint??0??0???4????16.设f?x??ax?b?lnx,在?1,3?上f?x??0,求出常数a,b使?f?x?dx最

13小。

17

解:当?f?x?dx最小,即??ax?b?lnx?dx最小,由f?x??ax?b?lnx?0知,

1133y?ax?b在y?lnx的上方,其间所夹面积最小,则y?ax?b是y?lnx的切线,

而y??111,设切点为?x0,lnx0?,则切线y??x?x0??lnx0,故a?,xx0x0b?lnx0?1。

3?a?于是I???ax?b?lnx?dx??x2?bx???lnxdx

11?2?133?4a?2?1?lna???lnxdx

13??4?令Ia21?0得a?a2从而x0?2,b?ln2?1

???又Ia32?0,此时?1f?x?dx最小。a2217.已知f?x??e?x,求?f??x?f???x?dx。

01解:f??x???2xe?x

2

?f??x?f???x?dx??011012f??x?df??x???f??x??

2023221??x????2xe??2??2e?2

018.设f?x??x2?x?f?x?dx?2?f?x?dx,求f?x?。

0021解:设?f?x?dx?A,?f?x?dx?B,则f?x??x2?Bx?2A

0012∴A??f?x?dx??x2?Bx?2Adx?11?B?2A

0032228∴B??f?x?dx??x2?Bx?2Adx??2B?4A

00314解得:A?,B?,于是

3342f?x??x2?x?

3311????19.?

?0?f?cosx?cosx?f??cosx?sinx?dx。

218

解:原式??f?cosx?cosxdx??sinxf??cosx?dcosx

00????f?coxs?coxdxs?sinxf?coxs?0??f?coxs?coxsdx?00???0

20.设x?0时,F?x???x2?t2f???t?dt的导数与x2是等价无穷小,试求

0x??f???0?。

?x?解:limx0x?02?t2f???t?dtx3x0?3??limx?0x02xf???t?dtx2

?limx?02?f???t?dtx?lim2xf?????????0,x??x?0x?2f???0??1故f???0??

(C)

1.设f?x?是任意的二次多项式,g?x?是某个二次多项式,已知

12?10b?1??1?f?x?dx??f?0??4f???f?1??,求?g?x?dx。

a6??2??解:设x??b?a?t?a,则

I??g?x?dx??g??b?a?t?a??b?a?dt

a0b1??b?a??g??b?a?t?a?dt

01令g??b?a?t?a??f?t?

?1??b?a?于是f?0??g?a?,f???g??,f?1??g?b?

22????由已知得I??b?a??b?a?????ga?4g?gb???6?2????2.设函数f?x?在闭区间?a,b?上具有连续的二阶导数,则在?a,b?内存在?,

19

b?a?b?13使得?f?x?dx??b?a?f???b?a?f?????。?a?2?24证:由泰勒公式

f?x??f?x0??f??x0??x?x0??f??????x?x0?22!其中x0,x??a,b?,?位于x0与x之间。两边积分得:

f?????2?x?x0?dxa2!f?????3b?baf?x?dx??f?x0?dx??f??x0??x?x0?dx??aabb??b?a?f?x0??令x0?

f??x0??b?x0?2??a?x0?2?2??6??b?x?03??a?x0?

?a?b,则2?ba22?a?ba?b1a?ba?b?????????f?x?dx??b?a?f???f?????b????a???

2??2???2??2?2????33f???????a?b??a?b?????a????b?6?22??????????a?b?13??b?a?f????b?a?f?????,???a,b?。

?2?243.f?x?在?a,b?上二次可微,且f??x??0,f???x??0。试证

?b?a?f?a???af?x?dx??b?a?f?b??f?a?。

b2证明:当x??a,b?时,由f??x??0,f???x??0知f?x?是严格增及严格凹的,从而f?x??f?a?及f?x??f?a??bbaaf?b??f?a??x?a?b?a故?f?x?dx??f?a?dx??b?a?f?a?

?bab?f?b??f?a???f?x?dx???f?a??x?a??dx

ab?a??f?b??f?a?1?b?a?2

b?a2f?b??f?a???b?a?

2??b?a?f?a??4.设函数f?x?在?a,b?上连续,f??x?在?a,b?上存在且可积,f?a??f?b??0,

20

1b试证f?x???f??x?dx(a?x?b)。

2a证明:由于在?a,b?上f??x?可积,故有

?baf??x?dx??f??t?dt??f??t?dt

axxaxb而f?x???f??t?dt,?f?x???f??t?dt

xbb1?x???ftdt?f??t?dt????x?a?2?b1x1bf?x????f??t?dt??f??t?dt???f??t?dt

?x?a?2a2?于是f?x??5.设f?x?在?0,1?上连续,?f?x?dx?0,?xf?x?dx?1,求证存在一点x,

00110?x?1,使f?x??4。

证:假设f?x??4,x??0,1?

由已知?f?x?dx?0,?xf?x?dx?1,得

00111??xf?x?dx?011?111???fxdx?x???f?x?dx??0022????x?01111f?x?dx?4?x?dx

0221??11???1?2?4????x?dx??1?x??dx??1

02???2???21111f?x?dx?4?x?dx

022故?x?01从而?x?01?f?x??4?dx?02∴f?x??4?0

由于f?x?在?0,1?连续,则f?x??4或f?x???4。从而?f?x?dx?4或?4,

01这与?f?x?dx?0矛盾。故f?x??4。

016.设f?x?可微,f?0??0,f??0??1,F?x???tfx2?t2dt,求lim0x?0x??F?x?。x421

1x2解:令x?t?u,则F?x???f?u?du,显然F??x??xfx2

2023??F?x?F??x?fx2fx2?f?0?11?于是lim4?lim。???lim?lim?f0?2x?0xx?04x3x?04x2x?0444x?0??????7.设f?x?在

4b?a,b?上连续可微,若f?a??f?b??0,则

f?x?dx?maxf??x?。??b?a?2aa?x?b?a?b??a?b?证:因f?x?在?a,b?上连续可微,则f?x?在?a,,b?上均满足拉?和?22????格朗日定理条件,设M?maxf??x?,则有

a?x?b?baf?x?dx??a?b2aa?b2af?x?dx??a?bf?x?dx

2bb????f?a??f???1??x?a?dx??a?bf?b??f???2??x?b?dx

2a?b2af???1??x?a?dx??a?bf???2??x?b?dx

2a?b2ab?M?故

4x?adx?M?a?bx?bdx?2bM?b?a?24f?x?dx?M。??b?a?2abak?0b8.设f?x?在?A,B?上连续,A?a?b?B,求证lim?f?x?k??f?x?dx

k?f?b??f?a?。

证:?baf?x?k??f?x?1b1bdx??f?x?k?dx??f?x?dx

kkakabb?ka?ka令x?k?u,则?f?x?k?dx??于是?bf?u?du

f?x?k??f?k?1b?k1bdx??f?x?dx??f?x?dx

akka?kka1b?k1a?kf?x?dx??f?x?dx??kbkabf?x?k??f?x?1b?k1a?kdx?lim?f?x?dx?lim?f?x?dx故lim?bak?0ak?0k?0kkk

22

?f?b??f?a?

9.设f?x?为奇函数,在???,???内连续且单调增加,F?x????x?3t?f?t?dt,

0x证明:(1)F?x?为奇函数;(2)F?x?在?0,???上单调减少。

证:(1)F??x???

f?x?为奇函数?x0??x?3t?f?t?dtt??u??0???x?3u?f??u?du

xx?0??x?3u?f?u?du???0?x?3u?f?u?du??F?x?

x∴F?x?为奇函数。

?xx??(2)F??x??x?f?t?dt?3?tf?t?dt??0?0???f?t?dt?xf?x??3xf?x?

0x??f?t?dt?2xf?x?

0x???f?t??f?x??dt?xf?x?

0x由于f?x?是奇函数且单调增加,当x?0时,f?x??0,

??f?t??f?x??dt?0??0?t?x?,故F??x??0,x??0,???,即F?x?在?0,???上

0x单调减少。

10.设f?x?可微且积分??f?x??xf?xt??dt的结果与x无关,试求f?x?。

01解:记??f?x??xf?xt??dt?C,则

01

?0?f?x??xf?xt??dt?f?x???0f?u?du?C

1x由f?x?可微,于是f??x??f?x??0

解之f?x??ke?x(k为任意常数)

11.若f???x?在?0,??连续,f?0??2,f????1,证明:

??f?x??f???x??sinxdx?3。

0?解:因?f???x?sinxdx??sinxdf??x?

00??23

?sinxf??x???0??0f??x?coxsdx????0f??x?coxsdx????coxsd?fx???f?x?coxs??00??0f?x?sinxdx?f????f?0????0f?x?sinxdx?1?2????0f?x?sinxdx?3??0f?x?sinxdx所以??0?f?x??f???x??sinxdx?3。

12.求曲线y??x0?t?1??t?2?dt在点(0,0)处的切线方程。

解:y???x?1??x?2?,则y??0??2,故切线方程为:y?0?2?x?0?,即y?2x。

13.设f?x?为连续函数,对任意实数a有

???a??asinxf?x?dx?0,f?2??x??f?x?。

证:两边对a求导

sin???a?f???a????1?sin???a?f???a??0即f???a??f???a?

令a???x,即得f?2??x??f?x?。14.设方程2x?tg?x?y???x?y2d20sectdt,求ydx2。

解:方程两边对x求导,得

2?se2c?x?y??1?y???se2c?x?y??1?y??

从而y??1?cos2?x?y??sin2?x?y?

y???2sin?x?y?co?sx?y??1?y???2sin?x?y?co3s?x?y?15.设f?x?在?a,b?上连续,求证:

24

求证

1x?f?t?h??f?t??dt?f?x??f?a?(a?x?b)limh?0?h?a证:设F?x?为f?x?的原函数,则左边?lim?h?01?F?x?h??F?a?h??F?x??F?a??h?F?x?h??F?x?F?a?h??F?a???lim??h?0??hh???f?x??f?a??右边。16.当x?0时,f?x?连续,且满足?解:等式两边对x求导,得fx2?1?x?2x?3x2?1令x2?1?x??2得x?1将x?1代入得:f?2??5?1故f?2??1。5x2?1?x?0f?t?dt?x,求f?2?。

????17.设f?x?在?0,1?连续且递减,证明

??f?x?dx??f?x?dx,其中???0,1?。

001?证:??f?x?dx?????f?x?dx??f?x?dx??

01?1?0??则??f?x?dx??f?x?dx

001????f?x?dx????1??f?x?dx

?01????1???f??1??????1?f??2?,?1???,1?,?2??0,???????1??f??1??f??2??由于f?x?递减,f??1??f??2?故??f?x?dx??f?x?dx?0

001?即??f?x?dx??f?x?dx。

001?18.设f??x?连续,F?x???f?t?f??2a?t?dt,f?0??0,f?a??1,试证:

0x25

F?2a??2F?a??1。

证:F?2a??2F?a?????2a02a0f?t?f??2a?t?dt?2?f?t?f??2a?t?dt

0a0af?t?f??2a?t?dt??f?t?f??2a?t?dtf?t?f??2a?t?d?2a?t???f?t?f??2a?t?dt

02a2aaa???2aa??f?t?f?2a?t?a??f??t?f??2a?t???f?t?f??2a?t?dt

0a在第一个积分中,令2a?t?u,则

?2aaf??t?f?2a?t?dt??f?u?f??2a?u?du

02a2a而?f?t?f?2a?t?a??f?2a?f?0??f故F?2a??2F?a??1

?a??1

19.设g?x?是?a,b?上的连续函数,f?x???g?t?dt,试证在?a,b?内方程

axg?x??f?b??0至少有一个根。b?a证:由积分中值定理,存在???a,b?使f?b???g?t?dt?g????b?a?

ab即g????f?b??0b?a故?是方程g?x??f?b??0的一个根。b?axxab20.设f?x?在?a,b?连续,且f?x??0,又F?x???f?t?dt??(1)F??x??2(2)F?x??0在?a,b?内有且仅有一个根。证:(1)F??x??f?x??ab1dt,证明:

f?t?1?2??fx(2)F?a???b1dt?0,F?b???f?t?dt?0

af?t?又F?x?在?a,b?连续,由介值定理知F?x??0在?a,b?内至少有一根。又F??x??0,则F?x?单增,从而F?x??0在?a,b?内至多有一根。

26

故F?x??0在?a,b?内有且仅有一个根。21.设f?x?在?0,2a?上连续,则?证:?2a02a0f?x?dx???f?x??f?2a?x??dx。

0af?x?dx??f?x?dx??0a2aaf?x?dx

令x?2a?u,dx??du,则

?2aaf?x?dx??f?2a?u?du??f?2a?x?dx

00aa故?2a0f?x?dx???f?x??f?2a?x??dx

0a22.设f?x?是以?为周期的连续函数,证明:

??sinx?x?f?x?dx???2x???f?x?dx。

002??证:?2?0?sinx?x?f?x?dx

?2?0???sinx?x?f?x?dx??令x???u,则

??sinx?x?f?x?dx

???u????u?f???u?du???sinx?x?f?x?dx??0?sin?02?2?????u???sinu?f?u?du(∵f?x?以?为周期)故?0?sinx?x?f?x?dx??0?2x???f?x?dx

b?23.设f?x?在?a,b?上正值,连续,则在?a,b?内至少存在一点?,使

??af?x?dx??f?x?dx??xbax1bf?x?dx。?a2证:令F?x???f?t?dt??f?t?dt由于x??a,b?时,f?x??0,故F?a????f?t?dt?0

abF?b???f?t?dt?0

ab故由零点定理知,存在一点???a,b?,使得F????0即?f?t?dt??f?t?dt?0

a?b?27

?f?x?dx???f?x?dx

ab?b又?f?x?dx??f?x?dx??f?x?dx?2?f?x?dx

aa?b??a故?f?x?dx??f?x?dx?a?b?1bf?x?dx。2?a1f?u?1?du??lnf?u?du。0f?u?24.证明?lnf?x?t?dt??ln001x证:设x?t?u?1,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论