大学物理第六章 恒定磁场习题解劝答_第1页
大学物理第六章 恒定磁场习题解劝答_第2页
大学物理第六章 恒定磁场习题解劝答_第3页
大学物理第六章 恒定磁场习题解劝答_第4页
大学物理第六章 恒定磁场习题解劝答_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——大学物理第六章恒定磁场习题解劝答

第6章恒定磁场

(C)

(A)小磁针北(N)极在该点的指向;

(B)运动正电荷在该点所受最大的力与其速度的矢积的方向;(C)电流元在该点不受力的方向;

(D)载流线圈稳定平衡时,磁矩在该点的指向。

2.以下关于磁感应线的描述,哪个是正确的?(D)

(A)条形磁铁的磁感应线是从N极到S极的;(B)条形磁铁的磁感应线是从S极到N极的;(C)磁感应线是从N极出发终止于S极的曲线;(D)磁感应线是无头无尾的闭合曲线。3.磁场的高斯定理

?1.空间某点的磁感应强度B的方向,一般可以用以下几种方法来判断,其中哪个是错误的?

??B???dS?0说明白下面的哪些表达是正确的?(A)

a穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;

b穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c一根磁感应线可以终止在闭合曲面内;d一根磁感应线可以完全处于闭合曲面内。(A)ad;(B)ac;(C)cd;(D)ab。

4.如下图,在无限长载流直导线附近作一球形闭合曲面S,当曲面S向长直导线靠近时,穿过曲面S的磁通量?和面上各点的磁感应强度B将如何变化?(D)

(A)?增大,B也增大;

S(B)?不变,B也不变;I

(C)?增大,B不变;(D)?不变,B增大。

5.两个载有相等电流I的半径为R的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o处的磁感应强度大小为多少?(C)

(A)0;(B)?0I/2R;

(C)2?0I/2R;(D)?0I/R。

IoI6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量(A)

A、等于零B、不一定等于零C、为μ0ID、为

1?0i?1?qi

n?7、一带电粒子垂直射入磁场B后,作周期为T的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B)

????A、B/2B、2BC、BD、–B

8竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B,导线质量为m,

1

导线在磁场中的长度为L,当水平导线内通有电流I时,细线的张力大小为(A)

(A)(BIL)2?(mg)2;(B)(BIL)2?(mg)2;(C)(0.1BIL)2?(mg)2;(D)(BIL)?(mg)。

22Br9洛仑兹力可以(B)

(A)改变带电粒子的速率;(B)改变带电粒子的动量;(C)对带电粒子作功;(D)增加带电粒子的动能。

3.如下图,两种形状的载流线圈中的电流强度一致,则O1、O2处的磁感应强度大小关系是(A)II(A)BO1?BO2;(B)BO1?BO2;

(C)BO1?BO2;(D)无法判断。

R2R2O1R1O2R15.一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R1和R2(R1

方向沿x轴正向。(3分)

21.A和B为两个正交放置的圆形线圈,其圆心相重合。A线圈半径RA?0.2m,NA?10匝,通有电流

IA?10A;B线圈半径RB?0.1m,NB?20匝,通有电流IB?5A。求两线圈公共中心处的磁感应强度。

解:两线圈在各自圆心处的磁感应强度分别为

NA?0IA?3.14?10?4T(3分)

2RAN?IBB?B0B?6.28?10?4T(3分)

2RBBA?两线圈在各自圆心处的磁感应强度相互垂直,所以在公共中心处的磁感应强度大小为

22B?BA?BB?7.02?10?4T(3分)??BB与BB的夹角为??arctanA?26.56?(1分)

BB

22宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。bMIbNxb/2

解:建立如下图的坐标系,在导体上取宽度为dy窄条作为电流元,其电流为

IdI?dy

b(1)电流元在M点的磁感强度大小为

bydBMdB??0dI2?(1.5b?y)??0I2?(1.5b?y)bIdy

obdBxx方向如下图

M点的磁感强度大小为

B??dB???b2b?2N?0I2?(1.5b?y)bdy

ydy?0Iln22?bb/2磁感强度方向沿x轴负方向。(2)电流元在N点的磁感强度大小为

dB??0dI2?x?y22??0I2?bx?y22dy

6

根据电流分布的对称性,N点的总的磁感强度沿y由方向。N点的磁感强度大小为

B??dBy?????b2b?2xx?y222dB?dy

?x2?0I22x?y2?bx?y?0Ibarctg?b2x磁感强度方向沿y轴正方向。

23.两根长直导线沿半径方向引到铁环上的A、B两点,并与很远的电源相连,如下图,求环中心O的磁感应强度。

BI

OA

解:设两段铁环的电阻分别为R1和R2,则

BI通过这两段铁环的电流分别为

I1?IR2R1,I2?I

R1?R2R1?R2I2R?2两段铁环的电流在O点处激发的磁感强度大小分别为

O?1AI1R12?0I1?1?0IR2?1B1??

2R2?2RR1?R22??I??IR1?2B2?022?0

2R2?2RR1?R22?R?lr?根据电阻定律R??可知1?1所以B1?B2??R2?2SSO点处的磁感强度大小为B?B1?B2?0

24.一个塑料圆盘,半径为R,电荷q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为?。求圆盘中心处的磁感应强度。

解:在圆盘上取半径为r、宽度为dr的同心圆环,其带电量为

qdq?2?rdr

?R2圆环上的电流为

drrR7

2?rdr2?rdr2dq?R2q?dI????R?rdr

2?dtT?R2?dI在圆心处激发的磁感强度大小为

dB??0dI2r?R?0q??0q?rdr?dr

2r?R22?R2?0q??0q?dr?2?R2?R2圆盘中心处的磁感强度大小

B??dB??0方向垂直于纸面。

25.一多层密绕螺线管,内半径为R1,外半径为长为R2,长为l,如下图。设总匝数为N,导线中通过的电流为I。试求这螺线管中心O点的磁感强度。

解在螺线管中取一原为dr的密绕导线薄层,由螺线管磁场计算公式,得该薄层在其中心O点的磁感强度

dB??02ni(cos?2?cos?1)??0nicos?(3分)

其中n为单位长度的匝数,则有

Nn?dr,cos??(R2?R1)l代入得

l2lr2?()22

dB??0NIdr(R2?R1)ll2lr2?()22??0NI2(R2?R1)drlr2?()22(3分)

整个螺线管在O点产生的磁感强度

8

l2R2?R2?()2R2?0NI?0NIdr2(3分)

B??dB???lnR12(R?R)2(R2?R1)ll221r2?()2R1?R1?()22226.一均匀带电长直圆柱体,电荷体密度为?,半径为R,绕其轴线匀速转动,角速度为w试求:

(1)圆柱体内距轴线r处的磁感强度(2)两端面中心处的磁感强度

解(1)体内均匀带电的长直圆柱体以角速度w旋转时,等效为一个多层的同轴密绕螺线管。

在管外,r>R处,B=0。在管内距轴线r处,作如下图的积分回路,由安培环路定理得

?B?dl???I(2分)

0而?I???(R?r)?l22w,代入得2?B?1?0w?(R2?r2)(2分)2将r=0代入,得中心轴线的磁感强度

1?0w?R2(3分)212(2)端面中心处的磁感强度为中心轴线处的一半,即B??0w?R(3分)

4B?

27一长直圆柱状导体,半径为R,其中通有电流I,并且在其横截面上电流密度均匀分布。求导体内、外磁感应强度的分布。

解:圆柱体轴对称,以轴上一点为圆心取垂直轴的平面内半径为r的圆为安培环路

????B?dl?2πrB??0?I3分

L当r?R

?I=I

?0I2πr3分

?B?Ir2当r?R?I=2

R??Ir2??B?dl??02

rR?IrB?02

2πR28.一无限大均匀载流平面置于外磁场中,左侧的磁感强度为B1,右侧的磁感强度为B2?3B1,方向如图12-19所示。试求:

(1)载流平面上的面电流密度;

9

(2)外磁场的磁感强度B0

解(1)作闭合回路abcda,由安培环路定理得

?B?dl?B?l?B?l?(3B?B)?l??21110j?l(2分)

(2分)

'所以j?2B1?0方向垂直纸面向外。

(2)面电流产生的磁场,在右边磁感强度的方向沿z轴正向,左边沿z轴负向,量值是B?(1分)

'设外磁场为B0?B0xi?B0yj?B0zk,由场强叠加原理:B2?B0?B,即

1?0j。23B1k?B0xi?B0yj?B0zk?所以B0x?0,B0y即B0?2B1

1?0jk(2分)22B1?0,B0zk?3B1??01?2B1

2?0方向沿z轴正向。(3分)

29一根很长的同轴电缆,由一导体圆柱和一同轴的圆筒组成,设圆柱的半径为R1,圆筒的内外半径为R2和R3。在这两个导体中,有大小相等而方向相反的电流I流过,如图。试求电缆产生的磁场磁感强度的分布,并用图形表示。

10

解:在电缆的横截面内,以圆柱的轴为圆心,作不同半径的圆为环路。利用安培环路定理,可求得不同场点的磁感强度。(1)当r?R1时,有

??Ir?r2B??,(2分)B?dl?B?2?r??I002?2?R1?R12(2)当R1?r?R2时,有???0IB?,(2分)B?dl?B?2?r??I0?2?r(3)当R2?r?R3时

????(r2?R22)??B?dl?B?2?r??0?I??R32?R22I?,

???0IR32?r2(2分)B?2?rR32?R22??(4)当r?R3时

???B?dl?B?2?r??0(I?I)?0,B?0(2分)

B-r的关系如下图。

?0I2?R1?0I2?R2(2分)

30.如下图,两无限长平行放置的柱形导体通过等值,反向的电流I,电流在两个阴影所示的横截面内均匀分布。设两个导体横截面的面知皆为S,两圆柱轴线间距为d。试求两导体中部分交叠部分的磁感强度。

11

解:初看起来,导体中的电流不具有柱对称性。但是若将两载流导体视为电流密度

I的圆柱体,由于其S电流方向相反,则重叠部分的磁感强度可视为两个长直截流的完整圆柱体在场点的磁感强度的叠加。每个长直圆柱电流B的磁场则分别具有对称性,并可用安培环路定理求得,因此

?0I2?0I?r1?r1(2分)

2?r1S2S?I?IB2?0?r22?0r2(2分)

2?r2S2S??取垂直纸面向外的单位矢量为k、d沿O1O2指向O2,则??0I????0I??B1?k?r1,B2?(?k)?r2(2分)

2S2S????0I????0I??B?B1?B2?k?(r1?r2)?k?d(2分)

2S2SB1?上式说明重叠部分空间的磁感强度与场点无关,即均匀分布的,其方向垂直O1O2向上,数值为

?0Id2S.。

(2分)

31一橡皮传输带以速度v匀速运动,如下图。橡皮带上均匀带有电荷,电荷面密度为?,试求橡皮带中部上方靠近表面一点处的磁感应强度。

解由于所述场点位于传输带中部极靠近带平面,因此,相对于该场点,带有电荷的传输带可以视为无限大电流平板,电流线密度

j?v?(3分)取如下图的回路abcd,由安培环路定理

12

???B?dl?Bl?Bl??0I??0lj(3分)1?0?v(2分)2??设带电荷平面法线方向的单位矢量为en,则B可表示为?1?B??0?v?en(2分)

2所以B?32.在半径为a的金属长圆柱体内挖去一半径为b的圆柱体,两柱体的轴线平行,相距为d,如下图。今有电流I沿轴线方向滚动,且均匀分布在柱体的截面上。试求空心部分中的磁感强度。

解圆柱中挖去了一部分后使电流的分布失去对称性。因此采用“补偿法〞。将挖去部分认为同时存在电流密度为j和?j的电流,这样,空心部分任一点的磁场B可以看成由半径为a,电流密度j的长圆柱体

???产生的磁场B1和半径为b、电流密度为?j的长圆柱体产生的磁场B2的矢量和,即???B?B1?B2(2分)

由安培环路定理可求得

r'j(3分)

22????'式中r和r分别为由两圆柱体轴线到空心部分任一点P的径矢。注意到B1与r1垂直,B2与r2垂直,可B1?rj,B2?得

?0?0

B?B1?B2(2分)

22(?0rj)2(?0rr'j)2?0rr'j2r2?r'?d2(?dj)2?2B1B2cos????2??44442rr'22

由于圆柱体剩余部分中的电流密度j?I,代入得

?(a2?b2)B??0Id2?(a2?b2)(2分)

由几何关系可以得到,B的方向与两轴线的连线相垂直,故此空心部分内为均匀磁场。

(1分)

33.如下图的长空心柱形导体半径分别为R1和R2,导体内载有电流I,设电流均匀分布在导体的横截

13

?

面上。求

(1)导体内部各点的磁感应强度。

(2)导体内壁和外壁上各点的磁感应强度。

解:导体横截面的电流密度为

??I(2分)22?(R2?R1)在P点作半径为r的圆周,作为安培环路。

??由?B?dl??0?I

得B2?r??0??(r?R)?221?0I(r2?R12)R?R2221(2分)

?0I(r2?R12)即B?(2分)22?r(R2?R12)对于导体内壁,r?R1,所以B?0(2分)对于导体外壁,r?R2,所以B??0I(2分)2?R234.厚度为2d的无限大导体平板,体电流密度j沿z方向,均匀流过导体,求导体内外的磁感应强度。(10分)

解:厚为2d的无限大导体平板其磁场的对称性特点与无限大平面相像,建坐标系OXYZ,O在板的中部,以O1O2为对称轴取回路ABCD如下图。

O1A=O1D=O2B=O2C,AB=CD=h

(1)当O1A>d时,求得的是板外的磁场分布状况由环路定理???B?dl??0j2dh?2分?,2Bh??0j2dh,B??0jd?2分?。B为常数,

L

?与距板的远近无关,左右两边分别为匀强磁场,在y>0的空间,B的方向指向X轴负方向,在y0,B??B?dl??j2yh,y?d,2Bh??j2yh2分,B??jy000??L??B与X轴正方向相反,y

解:

(1)由线圈磁矩公式

???M?pm?B(2分)

M?pmBsin?1?I??R2?B2(4分)1?10????0.12?0.52?0.0785(N?m)方向沿直径向上。

39.如图,一平面线圈由半径为0.2m的1/4圆弧和相互垂直的二直线组成,通以电流2A,把它放在磁感强度为0.5T的均匀磁场中,求:C?(1)线圈平面与磁场垂直时(如图),圆弧AC段所受的磁力.BI??(2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC段所受的磁力和直线AC的相等,所以

F?AC?I?B?2RIB?0.283N(4分)

方向与AC直线垂直(1分)

AO

Bsin300?1.57?10?2N?m(4分)

4??磁力矩M将驱使线圈法线转向与B平行(1分)

(2)M?PmBsin??I

40.在同一平面内有一长直导线和一矩形单匝线圈,线圈的长边与长直导线平行,如下图。若直导线中的电流为I1?20A,矩形线圈中的电流为I2?10A,求矩形线圈所受的磁场力。

解:根据题意,矩形线圈的短边bc和da所受磁场力的大小相等、方向相反,相互抵消。所以矩形线圈所受磁场力就是其长边ab和cd所受磁场力的合力。(2分)ab边所受磁场力的大小为F1?I2LB1??R2?0I1I2L方向向左(3分)

2?r1cd边所受磁场力的大小为F2??0I1I2L方向向右。(3分)

2?r2矩形线圈所受磁场力的合力的大小为

F?F1?F2??0I1I2L11(?)?3.3?10?4N2?r1r2方向沿水平向左。(2分)

难度系数等级:5

41.一半径为R的薄圆盘,放在磁感强度为B的均匀磁场中,B的方向与盘面平行,如下图.圆盘表面的电荷面密度为,若圆盘以角速度绕其轴线转动,试求作用在圆盘上的磁力矩.

分析带电圆盘绕轴转动形成圆电流,又置于磁场中必受磁力矩作用.圆盘上电荷均匀分布,面密度为,但圆盘绕轴转动时,沿径向电流分布不均匀.

16

解在半径为r处取宽为dr的细圆环,所带的电荷量为(1分)

当圆盘以角速度

转动时,细圆环上电荷运动形成圆电流,其电流强度为

(2分)

因此细圆环的磁矩方向沿轴线向上,大小为

(2分)

细圆环的圆电流在外磁场中所受的磁力矩为

(2分)

方向垂直纸面向里.圆盘所受磁力矩为

(2分)

方向垂直纸面向里.(1分)

42螺绕环中心周长l=10cm,环上均匀密绕线圈N=200匝,线圈中通有电流I=100mA。(1)求管内的磁感应强度B0和磁场强度H0;

(2)若管内充满相对磁导率?r=4200的磁性物质,则管内的B和H是多少?(3)磁性物质内由导线中电流产生的B0和由磁化电流产生的B?各是多少?解:(1)

N200I??0.1?200(A/m)l0.1B0??0H0?4??10?7?200?2.5?10?4(T)H0?nI?(2)

17

H?H0?200(A/m)

B??r?0H0??rB0?4200?2.5?10?4?1.05(T)

(3)

B0?2.5?10?4(T)B??B?B0?1.05(T)

43.在螺绕环上密绕线圈共400匝,环的平均周长是40cm,当导线内通有电流20A时,利用冲击电流计测得环内磁感应强度是1.0T。试计算:(1)磁场强度;(2)磁化强度;(3)磁化率;(4)磁化面电流和相对磁导率。

(1)

H?nI?(2)

N400I??20?2?104(A/m)l0.41.045?2?10?7.76?10(A/m)?74??10M?(3)

B?0?H??m??r?1?(4)

B1.0?1??1?38.8?74?0H4??10?2?10?r?B1.0?39.8?74?0H4??10?2?10Is??sl?Ml?7.76?105?0.4?3.1?105(A)

18

44.磁导率为?1的无限长圆柱形导线,半径为R1,其中均匀地通有电流I,在导线外包一层磁导率为?2的圆柱形不导电的磁介质,其外半径为R2,如下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论