版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页《比例的意义》教案
《比例的意义》教案1
教学内容
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
教学目标
1.使同学通过详细问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行沟通。
2.通过探究正比例意义的教学活动,使同学感受事物中充斥着运动、改变的思想,并且特定的事物进展、改变是有规律的。
3.通过观测、沟通、归纳、推断等教学活动,感受数学思维过程的合理性,培育同学的观测技能、推理技能、归纳技能和敏捷应用知识的技能。
教学重点
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
教学难点
理解正比例的意义,感受事物中充斥着运动、改变的思想,并且特定的事物进展、改变是有规律的。
教学预备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、联系生活,复习引入
〔1〕下面是居委会张阿姨负责的小区水费收缴状况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
〔2〕揭示课题。
老师:在上面的表中,有哪两种量?〔水费和用水量、总价和数量〕在我们平常的生活中,除了这两种量,我们还要遇到哪些数量呢?
老师:这些数量之间藏着不少的知识,今日这节课我们就来讨论这些数量间的一些规律和特征。
二、自主探究,学习新知
1、教学例1
用课件在刚才预备题的表格中增加几列数据,变成表。
老师:请同学们观测这张表,先独立思索后再争论、沟通:从这张表中你发觉了什么规律?并依据这种规律援助张阿姨把表格填写完整。
老师依据同学的回答将表格完善,并作须要的板书。
老师:同学们发觉表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的改变而改变,我们就说水费和用水量是相互关联的。
板书:相关联
老师:你们还发觉哪些规律?
同学在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,老师可依据同学的回答板书出来,便于其他同学观测:
老师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
2.教学试一试
老师:我们再来讨论一个问题。
课件出示第52页下面的试一试。
同学先独立完成。
老师:你能用刚才我们讨论例1的方法,自己分析这个表格中的数据吗?
老师依据同学的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的改变而改变。
时间扩大假设干倍,路程也扩大相同的倍数;时间缩小假设干倍,路程缩小相同的倍数。
路程与时间的比值是肯定的,速度是每时80km,它们之间的关系可以写成路程时间=速度〔肯定〕
3.教学议一议
老师:我们讨论了上面生活中的两个问题,谁能发觉它们之间的共同点呢?
引导同学归纳出这两个问题中都有相关联的量,一种量扩大或缩小假设干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是肯定的。
老师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动
老师:请大家说一说生活中还有哪些是成正比例的量。
三、夯实基础,巩固提高
〔1〕完成练习十二的第1题。
老师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
同学独立思索,先小组内沟通再集体沟通。
〔2〕完成练习十二的第2题。
四、全课小结
老师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
《比例的意义》教案2
教学目标:
1、使同学理解正比例的意义,能依据正比例的意义判断是不是成正比例。
2、培育同学概括技能和分析判断技能。
3、培育同学用进展改变的观点来分析问题的技能。
教学重点:
成正比例的量的特征及其判断方法。
教学难点:
理解两个变量之间的比例关系,发觉思索两种相关联的量的改变规律.
教法:
启发引导法
学法:
自主探究法
教具:
课件
教学过程:
一、定向导学〔5分〕
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今日我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能依据正比例的意义判断两种量是不是成正比例。
二、自主学习〔8分〕
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思索:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
〔1〕两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的比值〔也就是商〕肯定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积肯定,体积和高成正比例。
〔2〕构成正比例关系的两种量,需要具备三个条件:一是需要是两种相关联的量,二是一种量改变另一种量也随着改变,三是比值〔商〕肯定
〔3〕假如用*和y表示两种相关联的量,用k表示它们的比值〔肯定〕,正比例关系怎样用字母表示出来?
y/*=k〔肯定〕
〔4〕不计算,依据图像判断,假如杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导同学小结成正比例的量的意义和关系式。
三、合作沟通〔5分〕
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究〔5分〕
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测〔8分〕
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业〔9分〕
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的比值〔也就是商〕肯定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/*=k
〔肯定〕
《比例的意义》教案3
教学要求:
1、使同学认识反比例关系的意义,理解、掌控成反比例量的改变规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2、进一步培育同学观测、分析、综合和概括等技能,让同学掌控判断两种相关联的量成不成反比例的方法,培育同学判断、推理的技能。
教学重点:
认识反比例关系的意义。
教学难点:
掌控成反比例量的改变规律及其特征。
教学过程:
一、铺垫孕伏:
1、正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2、下面哪两种量成正比例关系?为什么?
(1)时间肯定,行驶的速度和路程。
(2)数量肯定,单价和总价。
3、说一说工作效率、工作时间和工作总量之间的数量关系。(同学回答后老师板书)在什么条件下,其中两种量成正比例?
4、引入新课。
假如工作总量肯定,工作效率和工作时间之间会怎样改变呢,改变又有什么规律呢?这两种量又成什么关系呢?这就是今日要学习的反比例关系。(板书课题)
二、自主探究:
1、教学例1。
出例如1某运输公司要运一批300吨的货物。让同学计算并完成填表任务。
每天运的数量〔吨〕1020304050
所需的天数3015107.5
在本上填表,并观测思索能发觉什么?指名口答,老师板书填表。让同学按学习正比例的方法观测表里内容,相互之间争论,发觉了什么。
指名同学口答争论结果得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的改变而改变。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的.天数反而缩小。
(3)可以看出它们的改变规律是:每天运的吨数和天数的积总是肯定的。(板书:每天运的吨数和天数的积肯定)由于每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数肯定时,每天运的吨数和天数的积肯定)
2、教学例2
出例如2
请同学们根据刚才学习例1的方法,自己学习例2,认真想想你发觉了些什么?同学观测思索后,小组争论:长方形的面积不变,当长发生改变时,长方形的宽发生改变吗?改变的规律是怎样的?
3、概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量改变,另一种量也随着变,改变时两种量中相对应的两个数的积肯定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是肯定)提问:假如用*和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?〔板书:*y=k(肯定)〕指出:这个式子表示两种相关联的量*和y,y随着*的改变而改变,它们的乘积k是肯定的。这时就说*和y成反比例关系。所以,两种量成反比例关系,我们就用*y=k(肯定)来表示。
4、详细认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷导热性能优化-洞察分析
- 油料种植信息平台构建-洞察分析
- 文化扩散的传播效果研究-洞察分析
- 游戏疗法在精神疾病中的应用-洞察分析
- 2023-2024年项目部安全管理人员安全培训考试题附答案(培优)
- 2023年企业主要负责人安全培训考试题及答案审定版
- 2023-2024年员工三级安全培训考试题附答案(B卷)
- 艺术场馆安全风险评估-洞察分析
- 新型支付方式探索-洞察分析
- 合伙人协议范本(含个人合伙合同范本)
- “以案促改”心得体会
- 2025届高考语文复习:散文的结构与行文思路 课件
- 审计工作述职报告
- 安全事故现场处置方案(3篇)
- 中国通 用技术集团招聘笔试题库
- 【MOOC】工程材料学-华中科技大学 中国大学慕课MOOC答案
- 银行贷款保证合同范本
- 《汽车胶粘剂》课件
- 手绘pop教学课件
- 2024脑血管病指南
- 企业三年营销规划
评论
0/150
提交评论