版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——初二数学平行线难题训练
初二数学平行线难题训练
一.选择题(共1小题)1.(2023春?XX校级期中)假使两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°
C.42°、138°或42°、10°D.以上都不对二.解答题(共28小题)2.(2023?六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.
3.(2023春?宜昌校级期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D.
(1)若点C恰在EF上,如图1,则∠DBA=______.
(2)将A点向左移动,其它条件不变,如图2,设∠BAD=α.①试求∠EBC和∠PBC的大小(用α表示).
②问∠DBA的大小是否发生改变?若不变,求∠DBA的值;若变化,说明理由.(3)若将题目条件“∠ACB=90°〞,改为:“∠ACB=β〞,其它条件不变,那么∠DBA=______.(直接写出结果,不必证明)
4.(2023春?雁塔区校级期中)如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°;
(2)如图②,假使∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,假使H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,变化?假使变化,说明理由;假使不变,试求出其值.
的值是否发生
第1页(共41页)
5.如下图,直线AE∥BD,点C在BD上,若AE=7,BD=3,△ABD的面积为12,求△ACE的面积.
6.(1)如图①,假使直线l1∥l2,那么三角形ABC与三角形A′BC面积相等吗?为什么?(2)如图②,平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,BC和B′C′在同一直线上,这两个平行四边形的面积相等吗?为什么?
7.(2023春?平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
8.(2023春?滑县期中)如下图,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.
第2页(共41页)
①结论:(1)______(2)______(3)______(4)______
②选择结论______,说明理由.
9.(2023春?威海期中)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为______;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
10.(2023秋?渠县期末)如图,AB∥CD,∠CDE=121°,GF交∠DEB的平分线EF于点F,∠AGF=140°,求∠F的度数.
11.(2023春?武安市期末)摸索:小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,摸索∠P与∠A,∠C的数量关系.
第3页(共41页)
发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;
小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A(______)∵PQ∥AB,AB∥CD.∴PQ∥CD(______)∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.∴∠APQ=∠A,∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是______.应用:
在图2中,若∠A=120°,∠C=140°,则∠P的度数为______;在图3中,若∠A=30°,∠C=70°,则∠P的度数为______;拓展:
在图4中,摸索∠P与∠A,∠C的数量关系,并说明理由.12.(2023春?江西校级期中)已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.
(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.
(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.
13.(2023秋?连云港校级月考)探究题:
第4页(共41页)
(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.14.(2023秋?连云港校级月考)如图,已知OA∥BE,OB平分∠AOE,∠4=∠5,∠2与∠3互余;那么DE和CD有怎样的位置关系?为什么?
15.(2023秋?连云港校级月考)(1)根据以下表达填依据:
已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:由于∠B+∠BFE=180°所以AB∥EF(______)由于AB∥CD(______)所以CD∥EF(______)
所以∠CDF+∠DFE=180°(______)
所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠
D=360°
(2)根据以上解答进行摸索,如图②,AB∥EF,∠BDF与∠B、∠F有何数量关系
(3)你能摸索处图③、图④两个图形中,∠BDF与∠B、∠F的数量关系吗?请写出来.16.(2023春?路北区期末)已知直线AB∥CD,
(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是______.
(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是______.
(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
17.(2023春?滨湖区期末)如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;
第5页(共41页)
(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).
18.(2023春?龙岗区校级期中)如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.
19.(2023春?萧山区期末)如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;
①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.
②若在平移过程中存在某种状况使得∠OEC=∠OBA,试求此时∠OEC的度数.
20.(2023春?泸州期中)如图,AB∥CD,点M是线段EF上一点,若点N是直线CD上的一个动点(点N不与F重合)
(1)当点N在射线FC上运动时,求证:∠FMN+∠FNM=∠AEF;(2)当点N在射线FD上运动时,猜想∠FMN+∠FNM与∠AEF有什么关系?并说明理由.
第6页(共41页)
21.(2023春?北塘区校级期中)如图,DH交BF于点E,CH交BF于点G,∠1=∠2,∠3=∠4,∠B=∠5.
试判断CH和DF的位置关系并说明理由.
22.(2023秋?泉港区期末)如图,点A、B分别在直线CM、DN上,CM∥DN.(1)如图1,连接AB,则∠CAB+∠ABD=______;
(2)如图2,点P1是直线CM、DN内部的一个点,连接AP1、BP1.求证:∠CAP1+∠AP1B+∠P1BD=360°;(3)如图3,点P1、P2是直线CM、DN内部的一个点,连接AP1、P1P2、P2B.试求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度数;
(4)若按以上规律,猜想并直接写出∠CAP1+∠AP1P2+…∠P5BD的度数(不必写出过程).
23.(2023春?灌阳县期中)如图:AE平分∠DAC,∠DAC=120°,∠C=60°,AE与BC平行吗?为什么?
24.(2023春?芗城区校级期中)根据图形及题意填空,并在括号里写上理由.已知:如图,AD∥BC,AD平分∠EAC.试说明:∠B=∠C
解:∵AD平分∠EAC(已知)∴∠1=∠2(角平分线的定义)∵AD∥BC(已知)
∴∠______=∠______(______)∠______=∠______(______)∴∠B=∠C.
第7页(共41页)
25.(2023春?鄂州校级期中)如图∠EFC+∠BDC=180°,∠AED=∠ACB,则∠DEF=∠B,为什么?
26.如图,六边形ABCDEF中,∠A=∠D,∠B=∠E,∠C=∠F.求证:AF∥CD,AB∥DE,BC∥EF.
27.已知,如图,直线AB∥CD,直线EF⊥AB,点M在CD上,MP平分∠GMC,PN平分∠EGM,且∠CMG+∠MGF=90°.
(1)若∠MGN=75°,∠CMG=60°,求∠MPN的度数;(2)若∠MGF=30°,∠CMG=60°,求∠MPN的度数;
(3)若点M在直线CD轴上移动,∠MPN的大小是否发生变化?假使保持不变,请给出证明;假使发生变化,请求出变化范围.
28.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.
(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试摸索∠EPF与∠EQF之间的关系.
(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.
(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为______.(直接写结论)
第8页(共41页)
29.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
第9页(共41页)
初二数学平行线难题训练
参考答案与试题解析
一.选择题(共1小题)1.(2023春?XX校级期中)假使两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°
C.42°、138°或42°、10°D.以上都不对
根据两边分别平行的两个角相等或互补列方程求解.解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,
4x﹣30°=4×10°﹣30°=10°;
(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,
4x﹣30°=4×42°﹣30°=138°.
所以这两个角是42°、138°或10°、10°.以上答案都不对.应选D.此题主要运用两边分别平行的两个角相等或互补,学生简单忽视互补的状况而导致出错.
二.解答题(共28小题)
2.(2023?六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.
根据两平行线间的距离相等,即可解答.
解:∵直线l1∥l2,
∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.此题考察了平行线之间的距离,解集此题此题的关键是明确两平行线间的距离相等.
第10页(共41页)
3.(2023春?宜昌校级期中)如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D.
(1)若点C恰在EF上,如图1,则∠DBA=45°.
(2)将A点向左移动,其它条件不变,如图2,设∠BAD=α.①试求∠EBC和∠PBC的大小(用α表示).
②问∠DBA的大小是否发生改变?若不变,求∠DBA的值;若变化,说明理由.(3)若将题目条件“∠ACB=90°〞,改为:“∠ACB=β〞,其它条件不变,那么∠DBA=β.(直接写出结果,不必证明)
(1)根据两直线平行,同旁内角互补求出∠CAD=90°,然后求出∠BAC=45°,从而得到∠ABC=45°,再根据BD平分∠FBC求出∠DBC=90°,然后求解即可;
(2)①EF∥GH,得出∠2=∠3,进一步得出∠1=∠3,利用三角形的内角和得出∠EBC,利用平角的意义得出∠PBC;
②根据两直线平行,内错角相等可得∠2=∠3,再根据三角形的内角和定理表示出∠4,然后表示∠5,再利用平角等于180°列式表示出∠DBA整理即可得解.(3)根据(2)的结论计算即可得解.解:(1)∵EF∥GH,
∴∠CAD=180°﹣∠ACB=180°﹣90°=90°,∵∠DAB=∠BAC,∴∠BAC=45°,∴∠ABC=45°,∵BD平分∠FBC,∴∠DBC=×180°=90°,∴∠DBA=90°﹣45°=45°;(2)如图,
①∵EF∥GH,
第11页(共41页)
∴∠2=∠3,∵∠1=∠2=α,∴∠1=∠3=α,∵∠ACB=90°,
∴∠EBC=90°﹣∠1﹣∠3=90°﹣2α,∠PBC=(180°﹣∠EBC)=45°+α;
②设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,
在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,
∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5,
=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x),=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x,=∠ACB,=×90°,
=45°;
(3)由(2)可知,
设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,
在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,
∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5,
=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x),=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x,=∠ACB,∠ACB=β时,∠DBA=β.
此题考察了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.
第12页(共41页)
4.(2023春?雁塔区校级期中)如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°;
(2)如图②,假使∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,假使H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,变化?假使变化,说明理由;假使不变,试求出其值.
的值是否发生
(1)根据DE∥BC,得到∠EDB+∠DBC=180°,再利用角平分线的性质,即可解答;(2)根据FD⊥AB,∠BGC=50°,得到∠DHG=40°,利用外角的性质得到∠FDC+∠HCD=50°,再根据DF平分∠EDC,CG平分∠ACD,得到∠EDC=2∠FDC,∠ACD=2∠HCD,得到∠EDC+∠ACD=2(∠FDC+∠HCD)=100°,利用三角形内角和为180°,∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣100°=80°.
(3)不变,根据∠DMH+∠DEC=2(∠ADF+∠DAN),∠ANF=∠ADF+∠DAN,即可解答.解:(1)如图1,
∵DE∥BC,
∴∠EDB+∠DBC=180°,
∴∠EDF+∠FDC+∠CDB+∠DBC=180°,∵∠CDB=∠DBC,∠EDF=∠FDC,∴2∠FDC+2∠CDB=180°,∴∠FDC+∠CDB=90°,∴FD⊥BD,
∴∠DBF+DFB=90°.(2)如图2,
第13页(共41页)
∵∠BGC=50°,FD⊥BD,∴∠DHG=40°,
∴∠FDC+∠HCD=40°,
∵DF平分∠EDC,CG平分∠ACD,∴∠EDC=2∠FDC,∠ACD=2∠HCD,
∴∠EDC+∠ACD=2(∠FDC+∠HCD)=80°,
∴∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变,如图3,
∵∠DMH+∠DEC=2(∠ADF+∠DAN),∠ANF=∠ADF+∠DAN,∴
=
=2.
此题考察了平行线的性质、三角形角平分线、外角的性质、三角形内角和定理,解决此题的关键是利用三角形的角平分线、外角得到角之间的关系.
5.如下图,直线AE∥BD,点C在BD上,若AE=7,BD=3,△ABD的面积为12,求△ACE的面积.
根据两平行线间的距离相等,可知两个三角形的高相等,所以根据△ABD的面积可求出高,然后求△ACE的面积即可.
第14页(共41页)
解:在△ABD中,当BD为底时,设高为h,在△AEC中,当AE为底时,设高为h′,∵AE∥BD,∴h=h′,
∵△ABD的面积为12,BD=3,∴h=8,
∴△ACE的面积为:
=28.
此题考察了两平行线之间的距离,解决此题的关键是根据两平行线间的距离相等求出高.
6.(1)如图①,假使直线l1∥l2,那么三角形ABC与三角形A′BC面积相等吗?为什么?(2)如图②,平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,BC和B′C′在同一直线上,这两个平行四边形的面积相等吗?为什么?
(1)△ABC和△A′BC的底边都为BC,由于平行线间的距离四处相等,所以△ABC和△A′BC的BC边上的高相等,所以△ABC和△DBC的面积相等.
(2)平行四边形ABCD与平行四边形AB′C′D有一条公共边AD,四边形ABCD为平行四边形,所以AD∥BC,由于平行线间的距离四处相等,所以平行四边形ABCD与平行四边形AB′C′D的高相等,即可解答.解:(1)相等;∵L1∥L2,
∴L1,L2之间的距离是固定的,
∴△ABC和△A′BC的BC边上的高相等,∴△ABC和△A′BC的面积相等;(2)∵四边形ABCD为平行四边形,∴AD∥BC,
∴AD和BC之间的距离是固定的,∵BC和B′C′在同一直线上,
∴平行四边形ABCD与平行四边形AB′C′D公共边AD边上的高相等,∴平行四边形ABCD与平行四边形AB′C′D面积相等.此题主要考察了平行线间的距离.解决此题的关键是明确平行线间的距离四处相等.
7.(2023春?平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
第15页(共41页)
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.
证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.
(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,
则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.
(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;
同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.
此题主要考察的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.8.(2023春?滑县期中)如下图,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)∠APC+∠PAB+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠PCD=∠APC+∠PAB
第16页(共41页)
(4)∠PAB=∠APC+∠PCD②选择结论(1),说明理由.
①(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;
(2)过点P作l∥AB,则AB∥CD∥l,再根据两直线内错角相等即可解答;
(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;
(4)根据AB∥CD,可得出∠PAB=∠PFD,再根据∠PFD是△CPF的外角,由三角形外角的性质进行解答;
②选择①中任意一个进行证明即可.
解:①(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°;
(2)过点P作直线l∥AB,∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;
(3)∵AB∥CD,∴∠PEB=∠PCD,
∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;
(4)∵AB∥CD,∴∠PAB=∠PFD,
∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,
第17页(共41页)
∴∠PAB=∠APC+∠PCD.
②选择结论(1),证明同上.
此题考察的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.9.(2023春?威海期中)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°;
(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;
(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.解:(1)作PG∥AB,如图①所示:则PG∥CD,
∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农民工工资拖欠专项整改协议3篇
- 减肥方法及其效果研究综述
- 二零二五年度房产代持保密协议范本3篇
- 新生儿心肺复苏知识
- 临床引起双硫仑样反应特点、诊断标准、分度、鉴别诊断及处理要点
- 二零二五年度信息安全管理责任承诺(含应急预案)2篇
- 二零二五年度his系统与药品供应链系统对接合同
- 河南省商丘市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 黑龙江大庆市(2024年-2025年小学六年级语文)部编版能力评测((上下)学期)试卷及答案
- 贵州商学院《概率论与随机过程》2023-2024学年第一学期期末试卷
- 2022年中国农业银行(广东分行)校园招聘笔试试题及答案解析
- 品牌管理第五章品牌体验课件
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 外科医师手术技能评分标准
- 保姆级别CDH安装运维手册
- 菌草技术及产业化应用课件
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 隧道二衬、仰拱施工方案
- 颤病(帕金森病)中医护理常规
- 果胶项目商业计划书(模板范本)
- 旋挖钻成孔掏渣筒沉渣处理施工工艺
评论
0/150
提交评论