版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三疑三探教案七年级数学下学期教案课题5.1.1相交线单元课时1授课人张军教学目标1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。3.通过辨别对顶角与邻补角,培养识图的能力。教材分析重点邻补角和对顶角的概念及对顶角相等的性质。难点在较复杂的图形中准确辨认对顶角和邻补角。教法三疑三探学法自学、合作、探究教具学具直尺、纸片、剪刀教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时,随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化?.如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化?.2.如果把剪刀的构造看作是两条相交的直线,剪纸过程就关系到两条相交直线所成的角的问题,阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、形成了两组角度数相等;2、存在角度的等量关系;3、始终产生四个角,存在互补角。)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.如图所示,∠1和∠2是对顶角的图形有()A.1个B.2个C.3个D.4个2.如图,三条直线AB,CD,EF相交于一点O,∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。(二).全班合探。3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,求∠EOB的度数.4.如图,直线a,b,c两两相交,∠1=2∠3,∠2=68°,求∠4的度数问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢?五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.1.2垂线(1)单元课时1授课人张军教学目标1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2.掌握点到直线的距离的概念,并会度量点到直线的距离。3.掌握垂线的性质,并会利用所学知识进行简单的推理。教材分析重点垂线的定义及性质。难点垂线的画法教法三疑三探学法自学、合作、探究教具学具直尺教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、产生90度的图形状态;2、怎么画90度的角;3、有互补角)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。2.用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。3.垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。4.垂直的推理应用:(1)∵∠AOD=90°()∴AB⊥CD()(2)∵AB⊥CD()∴∠AOD=90°()5.垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.用三角尺或量角器画已知直线L的垂线.(1)已知直线L,画出直线L的垂线,能画几条?L 小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。(二).全班合探。(2)怎样才能确定直线L的垂线位置呢?在直线L上取一点A,过点A画L的垂线,能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条? B.A.LL从中你能得出什么结论?____________________________________________2.变式训练,请完成课本P5练习第2题的画图。画完图后,归纳总结:画一条射线或线段的垂线,就是画它们所在______的垂线.教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:判断题.1.两条直线互相垂直,则所有的邻补角都相等.()2.一条直线不可能与两条相交直线都垂直.()3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是_________.(三)解答题.1.已知钝角∠AOB,点D在射线OB上.(1)画直线DE⊥OB(2)画直线DF⊥OA,垂足为F.2.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE的位置关系.五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.1.2垂线(2)单元课时1授课人张军教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言准确表达的能力。2.了解垂线段的概念,,体会点到直线的距离的意义,并会度量点到直线的距离。教材分析重点了解垂线段最短的性质难点了解垂线段最短的性质教法三疑三探学法自学、合作、探究教具学具直尺教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.上学期我们学习过“什么什么最短”的几何知识,还记得吗?。2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、两点间线段最短与本节有什么联系吗?;2、关于点到直线的距离垂线段最短为什么?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?)2.学具感受_l_P_a_A自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA长度也随之变化.观察:当PA最短时,直线_l_P_a_A3.画图验证(1)画直线L,在L外取一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段最小。4.归纳结论.连接直线外一点与直线上各点的所有线段中,.简单说成:.5.知识类比(1)垂线段与垂线有何区别联系?(2)垂线段与线段有何区别与联系?7.解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。7.探究“点到直线的距离”?定义:(1)学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。(2)对照课本P5图5.1-9,回答线段PO、PA1、PA2、PA3、PA4……中,哪一条或几条线段的长度是点P到直线L的距离?(3)如果课本P5图5.1-8中比例尺为1:100000,试计算农田P到小河的距离有多远?小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE是点A到直线BC的距离.(3)如图,线段CD的长是点C到直线AB的距离. (二).全班合探。已知直线a、b,过点a上一点A作AB⊥a,交b于点B,过B作BC⊥b交a于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离?并且用刻度尺测量这个距离.教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=7.4,AD=3.6,AC=6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD的距离是_____,A、B两点的距离是_________.2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短,因此线段AD的长是点A到BF的距离,对小明的说法,你认为对吗?3.用三角尺画一个是30°的∠AOB,在边OA上任取一点P,过P作PQ⊥OB,垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.1.3同位角、内错角、同旁内角单元课时1授课人张军教学目标1.理解三线八角中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.2.通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.教材分析重点同位角、内错角、同旁内角的识别。难点较复杂图形中同位角、内错角、同旁内角的识别。教法三疑三探学法自学、合作、探究教具学具直尺教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1、观察图形,你看到了哪几个角?2、你能说出这些角的位置关系吗?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、如何区别角的位置;2、没有看到相等的角呀;3、必须是三条直线吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.如图(1),将木条,与木条c钉在一起,若把它们看成三条直线则该图可说成“直线和直线与直线相交”也可以说成“两条直线,被第三条直线所截”.构成了小于平角的角共有个,通常将这种图形称作为“三线八角”。其中直线,称为两被截线,直线称为截线。2.如图(3)是“直线,被直线所截”形成的图形(1)∠1与∠5这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫同位角。(2)∠3与∠5这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫内错角。(3)∠3与∠6这对角在两被截线AB,CD的,在截线EF的,形如“”字型.具有这种关系的一对角叫同旁内角。3.找出图(3)中所有的同位角、内错角、同旁内角。小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。例1.如图(2)中∠1与∠2,∠3与∠4,∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?(二).全班合探。例2.课本P7的例题问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图(4),下列说法不正确的是()A、∠1与∠2是同位角B、∠2与∠3是同位角C、∠1与∠3是同位角D、∠1与∠4不是同位角2.如图(5),直线AB、CD被直线EF所截,∠A和_____是同位角,∠A和____是内错角,∠A和_____是同旁内角.3.如图(6),直线DE截AB,AC,构成八个角:指出图中所有的同位角、内错角、同旁内角.②∠A与∠5,∠A与∠6,∠A与∠8,分别是哪一条直线截哪两条直线而成的什么角?4.如图(7),在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D.①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.2.1平行线单元课时1授课人张军教学目标1.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.2.会用符号语言表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.教材分析重点探索和掌握平行公理及其推论.难点对平行线本质属性的理解,用几何语言描述图形的性质.教法三疑三探学法自学、合作、探究教具学具直尺、分别将木条a、b与木条c钉在一起,做成教具.教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.如图所示:转动木条,你发现了什么?2.当你观察到平行时候,角度有什么变化和联系?并且看到过一点有几条直线与该直线平行?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、看到过一点只有一条直线与一只直线平行;2、存在角度的等量关系;3、始终产生四个角,存在互补角。4、平行时候角度有相等的吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2,在平面内,两条直线除了相交外,还有别的位置关系吗?请同学门观察黑板相对的两条横及格本中两条横线,若把他们向两方延长,看成直线,他们还是相交直线吗?3.把三根木条看成三条直线,观察三根木条之间的关系,有几种可能性?4.自我演示.顺时针转动木条b两圈,然后思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与a不相交的位置?5.同学交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的右边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都如下图7.结合演示的结论,用自己的语言描述平行线的认识:①平行线是同一的两条直线②平行线是交点的两条直线7.尝试用数学语言描述平行定义特别注意:直线a与b是平行线,记作“”,这里“”是平行符号.思考:如何确定两条直线的位置关系?.小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.在转动教具木条b的过程中,有几个位置能使b与a平行?2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?(二).全班合探。3.观察画图、归纳平行公理及推论.(1)对照垂线的第一性质说出画图所得的结论.平行公理:(2)比较平行公理和垂线的第一条性质.共同点:都是“”,这表明与已知直线平行或垂直的直线存在并且是的.不同点:平行公理中所过的“一点”要在已知直线,两垂线性质中对“一点”没有限制,可在直线,也可在直线.4.探索平行公理的推论.(1)直观判定过B点、C点的a的平行线b、c是互相.(2)从直线b、c产生的过程说明直线b∥直线c.(3)用三角尺与直尺用平推方法验证b∥c.(4)用数学语言表达这个结论用符号语言表达为:如果那么教师出示展示与评价分工。问题1234展
评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:填空题.1.在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1‖L,那么L2与L(),这是因为()。3.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.判断题.1.不相交的两条直线叫做平行线.()2.如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()3.过一点有且只有一条直线平行于已知直线.()解答题.1.读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.2.2平行线的判定单元课时2授课人张军教学目标1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。教材分析重点在观察实验的基础上进行公理的概括与定理的推导难点定理形成过程中的逻辑推理及其书面表达。教法三疑三探学法自学、合作、探究教具学具三角板教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.如图所示:观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?图中,∠1和∠2什么关系?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、判定是不是就是证明出结论?2、若证明两直线平行,怎么证明;3、证明过程怎么写?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:(一)平行线判定方法1:1.观察思考:过点P画直线CD∥AB的过程,三角尺起了什么作用?图中,∠1和∠2什么关系?2.判定方法1:应用格式:。∵∠1=∠2(已知)简单说成:。∴AB∥CD(同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理?(二)平行线判定方法2、3:3.思考:教材14页(试着写出推理过程)判定方法2:应用格式:。∵∠2=∠3(已知)简单说成:。∴a∥b(内错角相等,两直线平行)4.将上题中条件改变为∠2+∠4=180°,能得到a∥b吗?(试写出推理过程)判定方法3:应用格式:。∵∠2+∠4=180°(已知)简单说成:。∴a∥b(同旁内角互补,两直线平行)小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.例教材15页2.练一练:教材15页练习1、2、3(二).全班合探。总结直线平行的条件(1)(2)方法1:若a∥b,b∥c,则a∥c。即两条直线都与第三条直线平行,这两条直线也互相平行。方法2:如图1,若∠1=∠3,则a∥c。即。方法3:如图1,若。方法4:如图1,若。方法5:如图2,若a⊥b,a⊥c,则b∥c。即在同一平面内,垂直于同一条直线的两条直线互相平行。教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:选择题:1.如图1所示,下列条件中,能判断AB∥CD的是()A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1)(2)(3)(4)2.如图2所示,如果∠D=∠EFC,那么()A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.下列说法错误的是()A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行填空题:1.如图3,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或_______,那么________,理由是______________;如果∠2+∠5=______或者______,那么a∥b,理由是________.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.4.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断_____∥_____,根据是_____.(2)由∠CBE=∠C可以判断_____∥_____,根据是_____.六、拓展延伸1、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.2、如图,已知,,试问EF是否平行GH,并说明理由。3.如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.4.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=300试说明AB∥CD.5、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为-什么?五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.3.1平行线的性质单元课时2授课人张军教学目标1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.教材分析重点平行线性质的研究和发现过程是本节课的重点.难点正确区分平行线的性质和判定是本节课的难点.教法三疑三探学法自学、合作、探究教具学具直尺教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1、观察思考:教材19页思考(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、判定和性质的区别是什么?2、性质在证明题中的应用;3、性质与判定定理一样使用吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:活动:1.完成教材19页探究同位角。2.两条平行线被第三条直线所截,。。∵a∥b(已知)同位角。∴∠1=∠5(两直线平行,同位角相等)∵a∥b(已知)3.简单说成:两直线平行。∴∠3=∠5()∵a∥b(已知)。∴∠3+∠6=180°()证明性质的正确性:4.性质1→性质2:如右图,∵a∥b(已知)∴∠1=∠2()又∵∠3=∠1(对顶角相等)。∴∠2=∠3(等量代换)。5.性质1→性质3:如右图,∵a∥b(已知)∴∠1=∠2()又∵()。∴。小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。两条平行线的距离:1、如图,已知直线AB∥CD,E是直线CD上任意一点,过E向直线AB作垂线,垂足为F,这样做出的垂线段EF的长度是平行线的距离。2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线m∥n,A、B为直线n上的两点,C、D为直线m上的两点。(1)请写出图中面积相等的各对三角形;(2)如果A、B、C为三个定点,点D在m上移动。那么,无论D点移动到任何位置,总有三角形与三角形ABC的面积相等,理由是。(二).全班合探。1.例教材15页2.练一练:教材15页练习1、2、3教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个2.如图2所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°3.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2的大小关系是()A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进,这两次拐弯的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°(二)填空题:1.如图3所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=_______.2.如图4,若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(4)(5)(6)3.如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是_________,因为____________.4.(2002.河南)如图6所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG平分∠B-EF,若∠1=72°,则∠2=_______.(三)解答题1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,并说明依据?3、如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.【拓展延伸】如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.2如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.证明:∵AB∥CD,(已知)∴∠BAC+∠ACD=180°,()又∵AE平分∠BAC,CE平分∠ACD,()∴,,()∴.即
∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相。推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相。五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.3.2命题、定理单元课时1授课人张军教学目标1、掌握命题的概念,并能分清命题的组成部分.2、经历判断命题真假的过程,对命题的真假有一个初步的了解。3、初步培养不同几何语言相互转化的能力。教材分析重点命题的概念和区分命题的题设与结论.难点区分命题的题设和结论教法三疑三探学法自学、合作、探究教具学具教学过程一、设疑自探(10分钟)(一)创设情境,导入新课我们学了性质和定理,通过标题你猜想一下它们的定义应该是什么呢?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、判定和性质的区别是什么?2、命题和定理的区别;3、命题和定理的使用?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)出示自探提示,组织学生自探。自探提示:(一)命题:1.阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断2.定义:的语句,叫做命题3.练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P,可以作一条直线与AB平行.请你再举出一些例子。命题的构成:4.许多命题都由和两部分组成.是已知事项,是由已知事项推出的事项.5.命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是,"那么"后接的的部分是.7.命题的分类真命题:。(定理:的真命题。)假命题:。小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1、指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°2、把下列命题改写成"如果……那么……"的形式:(1)互补的两个角不可能都是锐角:。(2)垂直于同一条直线的两条直线平行:。(3)对顶角相等:。3、判断下列命题是否正确:(1)同位角相等(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角.(二).全班合探。1、判断下列语句是不是命题(1)延长线段AB()(2)两条直线相交,只有一交点()(3)画线段AB的中点()(4)若|x|=2,则x=2()(5)角平分线是一条射线()2、选择题(1)下列语句不是命题的是()A、两点之间,线段最短 B、不平行的两条直线有一个交点C、x与y的和等于0吗? D、对顶角不相等。(2)下列命题中真命题是()A、两个锐角之和为钝角 B、两个锐角之和为锐角C、钝角大于它的补角 D、锐角小于它的余角(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有()A、1个 B、2个 C、3个 D、4个3、分别指出下列各命题的题设和结论。(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。4、分别把下列命题写成“如果……,那么……”的形式。(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3(_________________);(2)∵∠1=∠3,∴a∥b(_________________);(3)∵a∥b,∴∠1=∠2(__________________);(4)∵a∥b,∴∠1+∠4=180º(_____________________)(5)∵∠1=∠2,∴a∥b(__________________);(6)∵∠1+∠4=180º,∴a∥b(_______________).ADBCEF123ADBCEF1234证明:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()3.已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。CABDCABDEF12证明:∵AC⊥BC(已知)∴∠ACB=90°()∴∠BCD是∠ACD的余角∵∠BCD是∠B的余角(已知)∴∠ACD=∠B()4.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。BDACBDAC∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠∴∠3=∠()∴AD∥BE()五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题5.4平移单元课时1授课人张军教学目标1、了解平移的概念,会进行点的平移。2、理解平移的性质,能解决简单的平移问题教材分析重点平移的概念和作图方法.难点平移的作图.教法三疑三探学法自学、合作、探究教具学具图片(多媒体展示)教学过程一、设疑自探(10分钟)(一)创设情境,导入新课观察思考:观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、平移就是平行移动吧;2、平移时候方向有规定吗;3、平移之后的图片有什么作用。)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:探索活动:如何在一张半透明的纸上,画出一排形状和大小如图的雪人?3、思考:在所画的相邻的两个图案中,找出三组对应点,连接它们,观察它们的位置、长短有什么关系?4、平移定义:在平面内,将一个图形沿某个方向___一定的距离,这样的图形运动称为平移,平移改变的是图形的_____。注意:①图形的平移是由_____和_____决定的。②平移的方向不一定水平。5、平移性质:①平移不改变图形的____和____。②经过平移所得的图形与原来的图形的对应线段_______,对应角____,对应点所连的线段____。小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。(1)如图1,△ABC平移到△DEF,图中相等的线段有_____________,相等的角有____________,平行的线段有______________。(2)把一个△ABC沿东南方向平移3cm,则AB边上的中点P沿___方向平移了__cm。(3)如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________。(4)如图,△DEF是由△ABC先向右平移__格,再向___平移___格而得到的。(5)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船。(二).全班合探。平移作图如图,平移三角形ABC,使点A运动到A`,画出平移后的三角形A`B`C`.教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:选择题1、下列哪个图形是由左图平移得到的()2、如图所示,△FDE经过怎样的平移可得到△ABC.()A.沿射线EC的方向移动DB长;B.沿射线EC的方向移动CD长C.沿射线BD的方向移动BD长;D.沿射线BD的方向移动DC长3、下列四组图形中,有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是()4、如图所示,△DEF经过平移可以得到△ABC,那么∠C的对应角和ED的对应边分-别是()A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等填空题1、在平移过程中,平移后的图形与原来的图形________和_________都相同,因-此对应线段和对应角都________.2、如图所示,平移△ABC可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=____-度,∠EDF=_______度,∠F=______度,∠DOB=_______度.3、将正方形ABCD沿对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点O处,则移动前后两个图形的重叠部分的面积是原正方形面积的____。4、直角△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB方向平移3cm,则边AB所经过的平面面积为____cm2。解答题1、如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格.2、如图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对-应点D、点C的对应点F的位置.3、如图所示,画出平行四边形ABCD向上平移1厘米后的图形.4、如图,将△ABC沿东北方向平移3cm。五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题第五章相交线与平行线(复习课)单元课时1授课人张军教学目标1、了解相交线、平行线的联系,并掌握平行线的性质和判定。2、对于命题和定理能够熟练应用教材分析重点平行线的性质和判定使用难点平行线的性质和判定的正确使用教法三疑三探学法自学、合作、探究教具学具多媒体教学过程一、设疑自探(10分钟)(一)创设情境,导入新课针对本章节内容,你感觉哪一部分对将来的做题来讲是最主要的也是最难得。(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、按章节内容彼此之间的联系;2、能说明一下本章节内容上下的衔接性吗;3、定理和性质在使用的时候有什么区别吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:根据图表,复述本章的内容及相互之间的联系,注意语言的组织,请各位同学进行自探。小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.对顶角、邻补角。①两条直线相交、构成哪两种特殊位置关系的角?指出图(1)中具有这两种位置的角.(1)(2)(3)②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何?③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?2.垂线及其性质.①如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.(4)(5)(6)②如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一条直线上吗?为什么?③如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.=4\*GB3④请归纳一下与垂直有关的知识中,有哪些重要结论?3.同位角、内错角、同旁内角.4.平行线判定与性质学生练习:①填空:如图(8),当_______时,a∥c,理由是________;当______时,b∥c,理由是_________;当a∥b,b∥c时,______∥______,理由是_________.(8)(9)(10)②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系?为什么?(二).全班合探。如图,已知∠1=∠2,∠DAB=∠CBA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?ABCDEF12ABCDEF12教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.如图(1)所示,直线L1∥L2,AB⊥L1,垂足为点O,BC与L2相交于点E,若∠1=43°,则∠2=____(1)(2)(3)2.如图(2),直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2=_____3.如图(3),把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为___
4.如图,已知∠1=∠2,∠DAB=∠CBA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?ABCDEF12ABCDEF125.如图,在四边形BFCD中,点E、A两点在FC上,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么?AACDBFE153246五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题第五章相交线与平行线练习单元课时1授课人张军教学目标学会利用所学的知识进行解决数学问题.教材分析重点利用所学的知识进行解决数学问题.难点利用所学的知识进行解决数学问题.教法三疑三探学法自学、合作、探究教具学具多媒体教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1.用所学的基础知识如何解决数学问题呢?通过上节课的复习相信大家会通过实际行动来证明这一点的。2.同时在解决几何问题的同时注意些步骤的书写。(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、在书写步骤的时候,是否必须写成托式的形式;2、在解决问题的同时,根据需要写吗?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.2.如图(11),MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是________到________的距离,线段MN的长度是________到________的距离,又是_______的距离,点N到直线MG的距离是___.(11)(12)3.如图(12),AD∥BC,EF∥BC,BD平分∠ABC,图中与∠ADO相等的角有_______个,分别是___________.4.因为AB∥CD,EF∥AB,根据_________,所以_____________.5.命题“等角的补角相等”的题设__________,结论是__________.7.如图(13),给出下列论断:①AD∥BC:②AB∥CD;③∠A=∠C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.(13)(14)(15)7.如图(14),直线AB、CD、EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么∠FOC=______度.8.如图(15),直线a、b被C所截,a⊥L于M,b⊥L于N,∠1=66°,则∠2=________.小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价二、解疑合探(15分钟)(一).小组合探。1.下列语句错误的是()A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等(16)2.如图(16),如果AB∥CD,那么图中相等的内错角是()(16)A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠5与∠1,∠4与∠8;D.∠2与∠6,∠7与∠33.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内,一条直线不可能与两条相交直线都垂直,其中说法错误个数有()A.3个B.2个C.1个D.0个(二).全班合探。1.如图(17),是一条河,C河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)2.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.(1)判断CD与AB的位置关系;(2)BE与DE平行吗?为什么?教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)(一)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!(二)根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。ADBCADBCEF1234∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠∴∠3=∠()∴AD∥BE()2.在方格纸上,利用平移画出长方形ABCD的立体图,其中点D′是D的对应点.(要求在立体图中,看不到的线条用虚线表示)五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题第六章课题(1):算术平方根单元课时1授课人张军教学目标1.理解数的算术平方根的概念,并会用符号表示。2.会求一些非负数的算术平方根。教材分析重点算术平方根的求法和概念。难点算术平方根的求法和概念。教法三疑三探学法自学、合作、探究教具学具教学过程一、设疑自探(10分钟)(一)创设情境,导入新课关于实数的概念,学生们都了解些什么?(二)根据课题,提出问题看到这个课题,你想知道什么?请提出来。(预设:1、我们的这节课的主要问题是解决什么?2、除了了解实数的概念之外还需要掌握什么?3、什么是算术平方根?)同学们提的问题都很好(真好),大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理、补充为下面的自探提示,希望能为大家本节的学习提供帮助。请看:(大屏幕)(三)出示自探提示,组织学生自探。自探提示:1、填空:;;;;;;;;;2、填空:;;;3、阅读课文,完成以下填空:一般地,如果一个____的平方等于a,即,那么这个_____叫做a的_____.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:_____的算术平方根是0.4、求下列各数的算术平方根(1)100;(2);(3)0.0001二、解疑合探(15分钟)(一).小组合探。1、因为,所以100的算术平方根等于,即=;2、因为,所以的算术平方根等于,即=;3、因为,所以0.0001的算术平方根等于,即=;4、求下列各数的算术平方根(1)0.0025;(2)81;(3)5、求下列各式的值:(1);(2);(3)小组内讨论解决自探中未解决的问题;教师出示展示与评价分工。问题1234展示评价三、质疑再探:(3分钟)1.现在,我们已经解决了自探、合探问题。下面我们再回看一下,开始我们提出的问题还有那些没有解决?2.本节的知识已经学完,对于本节的学习,谁还有什么问题或不明白的地方?请提出来,大家一起来解决.四、运用拓展(12分钟)根据本节学习内容,学生自编习题,交流解答。请你来当小老师,编一道题,考考大家(同桌)!根据学生自编习题的练习情况,教师有选择的出示下面习题供学生练习。为了巩固本节知识,加强知识的运用拓展,老师也给大家设计了一些习题,检测一下大家对本节知识的掌握与运用情况。请看:1、计算下列各式:(1)—(2)—+(3)×—×2、求下列各等式中的正数x(1)=169(2)4—121=0五、全课总结1.学生谈学习收获。通过这节课的学习,你都有哪些收获?谈一谈.2.学科班长评价本节课活动情况。六、作业设计:课题第六章课题(2):平方根单元课时1授课人张军教学目标了解平方根的概念,会求某些正数(完全平方数)的平方根.教材分析重点平方根的概念.。难点平方根的概念.。教法三疑三探学法自学、合作、探究教具学具教学过程一、设疑自探(10分钟)(一)创设情境,导入新课1、64的算术平方根是;81的算术平方根是;2、=;=;3、填表;1163649(二)根据课题,提出问题看到这个课题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【原创】江苏省宿迁市2013-2020学年高二化学(苏教版)第二学期期中模拟试题
- 【名师伴你行】2021届高考生物二轮复习专题提能专训1细胞的分子组成和基本结构
- 吉林省八校2024-2025学年高一上学期期末联考历史试题(含答案)
- 2024-2025学年四川省绵阳市平武县八年级(上)期末英语试卷(含答案)
- 四川省宜宾市第三中学2024-2025学年高二上学期期末模拟考试物理试题(含答案)
- 【创新设计】2020-2021学年高中化学鲁科版选修5-分层训练:第1章-第1节-认识有机化合物
- 【创新设计】2021高考化学(广东专用)二轮-微题型专练13
- 安全生产上半年工作总结:凝聚全员参与共创和谐工作环境
- 【备战2021高考】全国2021届高中政治试题9月汇编:M单元+生活智慧与时代精神
- 一年级数学计算题专项练习1000题集锦
- 七年级数学资料培优汇总精华
- 器乐Ⅰ小提琴课程教学大纲
- 主债权合同及不动产抵押合同(简化版本)
- 服装厂安全生产责任书
- JGJ202-2010建筑施工工具式脚手架安全技术规范
- 液压爬模系统作业指导书
- 2018-2019学年北京市西城区人教版六年级上册期末测试数学试卷
- SFC15(发送)和SFC14(接收)组态步骤
- LX电动单梁悬挂说明书
- 旅行社公司章程53410
- 螺杆式制冷压缩机操作规程完整
评论
0/150
提交评论