勾股定理优秀教学设计(通用5篇)_第1页
勾股定理优秀教学设计(通用5篇)_第2页
勾股定理优秀教学设计(通用5篇)_第3页
勾股定理优秀教学设计(通用5篇)_第4页
勾股定理优秀教学设计(通用5篇)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页共页勾股定理优秀教学设计〔通用5篇〕勾股定理优秀教学设计〔通用5篇〕勾股定理优秀教学设计1一、教学目的1、让学生通过对的图形创造、观察、考虑、猜想、验证等过程,体会勾股定理的产生过程。2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。3、培养学生数学发现、数学分析^p和数学推理证明的才能。二、教学重难点利用拼图证明勾股定理三、学具准备四个全等的直角三角形、方格纸、固体胶四、教学过程(一)兴趣涂鸦,引入情景教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮教师完成一幅涂鸦,你能按要求完成吗?(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。(2)再分别以这个三角形的三边向三角形外作3个正方形。学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。(二)小组探究,大胆猜想教师:观察自己所涂鸦的图形,答复以下问题:1、恳求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。3、与小组成员交流探究结果?并猜想:假设直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?学生活动:先独立考虑,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。(三)兴趣拼图,验证猜想教师:请利用四个全等的直角三角形进展拼图。1、你能拼出哪些图形?能拼出正方形和直角梯形吗?2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?假设可以,请写下自己的推理过程。学生活动:独立拼图,并考虑如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。(四)课堂训练稳固提升教师:请完成以下问题,并上台进展展示。1、在Rt△ABC中,∠C=900,∠A,∠B,∠C的对边分别为a,b,ca=6,b=8、求c、c=25,b=15、求a、c=9,a=3、求b、(结果保存根号)学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。(五)课堂小结,梳理知识教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数学运用等方向进展总结。勾股定理优秀教学设计2一、教案背景概述:教材分析^p:勾股定理是直角三角形的重要性质,它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。学生分析^p:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的开展史为主线贯穿课堂始终,让学生对勾股定理的开展过程有所理解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探究和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。教学目的:1、经历用面积割、补法探究勾股定理的过程,培养学生主动探究意识,开展合理推理才能,表达数形结合思想。2、经历用多种割、补图形的方法验证勾股定理的过程,开展用数学的目光观察现实世界和有条理地考虑才能以及语言表达才能等,感受勾股定理的文化价值。3、培养学生学习数学的兴趣和爱国热情。4、欣赏设计图形美。二、教案运行描绘:教学准备阶段:学生准备:正方形网格纸假设干,全等的直角三角形纸片假设干,彩笔、直角三角尺、铅笔等。教师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。三、教学流程:〔一〕引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探究这一小机密。〔板书课题:探究直角三角形三边关系〕〔二〕实验探究1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:〔讨论难点:以斜边为边的正方形的面积找法〕交流后得出一般结论:〔用关于a、b、c的式子表示〕〔三〕探究所得结论的正确性当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?1、指导学生运用拼图、或正方形网格纸构造或设计合理分割〔或补全〕图形,去探究本结论的正确性:〔以四人小组为单位进展〕在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进展说理:如图2〔用补的方法说明〕师介绍:〔出示图片〕毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立即找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立即对他的这一发现进展了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为“毕达哥拉斯定理”。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。〔见课本52页彩图2—1,欣赏图片〕如图3〔用割的方法去探究〕师介绍:〔出示图片〕中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用“勾三、股四、弦五”测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以“形”证“数”,形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为“勾股定理”。〔点题〕20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。〔见课本50页彩图,欣赏图片〕如图4〔构造新图形的方法去探究〕师介绍:〔出示图片〕勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到如今,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也参加到对它的探究证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。〔假设有时间可以继续出示学生中有价值的图片进展讨论〕,有兴趣的同学课后可以继续探究……四、总结:本节课学习的勾股定理用语言叙说为:五、作业:1、继续搜集、整理有关勾股定理的证明方的探究问题并交流。2、探究勾股定理的运用。勾股定理优秀教学设计3教学目的:理解并掌握勾股定理及其证明。在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,开展合情推理才能,体会数形结合和从特殊到一般的思想。通过对勾股定理历史的理解,感受数学文化,激发学习兴趣;在探究活动中,培养学生的合作交流意识和探究精神重点探究和证明勾股定理。难点用拼图方法证明勾股定理。教学准备:教具多媒体课件。学具剪刀和边长分别为a、b的两个连体正方形纸片。教学流程安排活动流程图活动内容和目的活动1创设情境→激发兴趣通过对赵爽弦图的理解,激发起学生对勾股定理的探究兴趣。活动2观察特例→发现新知通过问题激发学生好奇、探究和主动学习的欲望。活动3深化探究→交流归纳观察分析^p方格图,得出直角三角形的性质——勾股定理,开展学生分析^p问题的才能。活动4拼图验证→加深理解通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探究精神。活动5理论应用→拓展进步初步应用所学知识,加深理解。活动6回忆小结→整体感知回忆、反思、交流。活动7布置作业→稳固加深稳固、开展进步。勾股定理优秀教学设计4一、教学任务分析^p勾股定理是平面几何有关度量的最根本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然根底。《20xx版数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步开展空间观念;2、在多种形式的数学活动中,开展合情推理才能;3、经历从不同角度分析^p问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探究勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、详细内容是运用勾股定理及其逆定理解决简单的实际问题、在这些详细问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等理论活动,这些都有助于开展学生的分析^p问题、解决问题才能和应用意识;有些探究活动具有一定的难度,需要学生互相间的合作交流,有助于开展学生合作交流的才能、本节课的教学目的是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,进步学生分析^p问题、解决问题的才能并体会数学建模的`思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。把实际问题化归成数学模型是难点。二、教学设想根据新课标提出的“要从学生已有的生活经历出发,让学生亲身经历将实际问题抽象成数学模型并进展解释和运用的同时,在思维才能情感态度和价值观等方面得到进步和开展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满兴趣性和吸引力,让他们在自主探究,合作交流中分析^p问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵敏性,浸透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时进步才能。在教学设计中,尽量考虑到不同学习程度的学生,注意知识由易到难的层次性,在课堂上,要照顾到承受较慢的学生。使不同学生有不同的收获和开展。三、教学过程分析^p本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、第一环节:情境引入情景1:复习提问:勾股定理的语言表述以及几何语言表达?设计意图:复习旧知识,标准语言及数学表达,表达数学的严谨性和标准性。情景2:脑筋急转弯一个三角形的两条边是3和4,第三边是多少?设计意图:既灵敏考察学生对勾股定理的理解,又增加了兴趣性,还能考察学生三角形三边关系。第二环节:合作探究〔圆柱体外表路程最短问题〕情景3:课本引例〔蚂蚁怎样走最近〕设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向考虑,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的才能,增强学生探究才能,操作才能,分析^p才能,开展空间观念、第三环节:变式训练〔由圆柱体外表路程最短问题逐步变为长方体外表的间隔最短问题〕设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和稳固。再将圆柱问题变为正方体长方体问题,学生有了之前的经历,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。第四环节:议一议内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,你能替他想方法完成任务吗?〔2〕李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?〔3〕小明随身只有一个长度为20厘米的刻度尺,他能有方法检验AD边是否垂直于AB边吗?BC边与AB边呢?设计意图:运用勾股定理逆定理来解决实际问题,让学生学会分析^p问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵敏处理问题、第五环节:方程与勾股定理在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,假设把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?意图:学生可以进一步理解勾股定理的悠久历史和广泛应用,理解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、第六环节:交流小结内容:师生互相交流总结:1、解决实际问题的方法是建立数学模型求解、2、在寻求最短途径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题。3、在直角三角形中,一条边和另外两条边的关系,借助方程可以求出另外两条边。意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史第七环作业设计:第一道题难度较小,大部分学生可以独

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论