斯坦福大学-大模型及其公平使用 FOUNDATION MODELS AND FAIR USE_第1页
斯坦福大学-大模型及其公平使用 FOUNDATION MODELS AND FAIR USE_第2页
斯坦福大学-大模型及其公平使用 FOUNDATION MODELS AND FAIR USE_第3页
斯坦福大学-大模型及其公平使用 FOUNDATION MODELS AND FAIR USE_第4页
斯坦福大学-大模型及其公平使用 FOUNDATION MODELS AND FAIR USE_第5页
已阅读5页,还剩119页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

arXiv:2303.15715v1[cs.CY]28Mar2023

FOUNDATIONMODELSANDFAIRUSE

APREPRINT

PeterHendersonXuechenLiDanJurafsky,TatsunoriHashimoto,MarkA.Lemley,PercyLiangStanfordUniversity

March29,2023

ABSTRACT

Existingfoundationmodelsaretrainedoncopyrightedmaterial.Deployingthesemodelscanposebothlegalandethicalriskswhendatacreatorsfailtoreceiveappropriateattributionorcompensation.IntheUnitedStatesandseveralothercountries,copyrightedcontentmaybeusedtobuildfoundationmodelswithoutincurringliabilityduetothefairusedoctrine.However,thereisacaveat:Ifthemodelproducesoutputthatissimilartocopyrighteddata,particularlyinscenariosthataffectthemarketofthatdata,fairusemaynolongerapplytotheoutputofthemodel.Inthiswork,weemphasizethatfairuseisnotguaranteed,andadditionalworkmaybenecessarytokeepmodeldevelopmentanddeploymentsquarelyintherealmoffairuse.First,wesurveythepotentialrisksofdevelopinganddeployingfoundationmodelsbasedoncopyrightedcontent.WereviewrelevantU.S.caselaw,drawingparallelstoexistingandpotentialapplicationsforgeneratingtext,sourcecode,andvisualart.Experimentsconfirmthatpopularfoundationmodelscangeneratecontentconsiderablysimilartocopyrightedmaterial.Second,wediscusstechnicalmitigationsthatcanhelpfoundationmodelsstayinlinewithfairuse.Wearguethatmoreresearchisneededtoalignmitigationstrategieswiththecurrentstateofthelaw.Lastly,wesuggestthatthelawandtechnicalmitigationsshouldco-evolve.Forexample,coupledwithotherpolicymechanisms,thelawcouldmoreexplicitlyconsidersafeharborswhenstrongtechnicaltoolsareusedtomitigateinfringementharms.Thisco-evolutionmayhelpstrikeabalancebetweenintellectualpropertyandinnovation,whichspeakstotheoriginalgoaloffairuse.Butweemphasizethatthestrategieswedescribeherearenotapanaceaandmoreworkisneededtodeveloppoliciesthataddressthepotentialharmsoffoundationmodels.

1Introduction

Foundationmodels

2

thataretrainedonlarge-scaleinternetdataserveasthebaseforanincreasingnumberofdeployedapplicationsintherealworld(

Bommasanietal.

,

2021

).ModelssuchasGPT-3/4(

Brownetal.

,

2020

;

OpenAI

,

2023

),

StableDiffusion(Rombachetal

.,

2021

),andCodex(

Chenetal.

,

2021

)areactivelybeingintegratedintoavarietyofproductslikeDuolingo’sLanguageLearningApp,

3

StabilityAI’sDreamStudio,

4

GitHub’sCoPilot,

5

andmore.Researchersaregrapplingwiththelegalityandethicsofdevelopinganddeployingthesemodelsusingdatabroadlycollectedfromtheinternet.Manyhaveraisedconcernsaboutusinguncuratedinternetdataformodeldevelopment,touchingonissuesofprivacy(

Carlinietal.

,

2021

)andfairness(

Benderetal.

,

2021

).Butasfoundationmodelsaredeployedinwaysthatcanharmthemarketsoftheoriginaldatacreators,particularlywhengeneratingcontentsimilartotheoriginaldata,intellectualpropertyrightsbecomeagrowingconcern.Inthispaper,westudythelegalchallengesofbuildinganddeployingfoundationmodelsfromtheperspectiveofintellectualproperty,focusingmainlyoncopyright.

*EqualContribution.Correspondenceto

phend@

,

lxuechen@

.©PeterHenderson,XuechenLi,DanJurafsky,TatsunoriHashimoto,MarkA.Lemley,&PercyLiang

2Foundationmodelscanroughlybedefinedaslargepre-trainedmachinelearningmodelsthatareusedasastartingpointforvariouscomputationaltasks.

3

/duolingo-max/

4

https://stability.ai/

5

/features/copilot

FoundationModelsandFairUseAPREPRINT

2

UnderUnitedStates("U.S.")law,copyrightforapieceofcreativeworkisassigned“themomentitiscreatedandfixedinatangibleformthatitisperceptibleeitherdirectlyorwiththeaidofamachineordevice”(

U.S.CopyrightOffice

,

2022

).Thebreadthofcopyrightprotectionmeansthatmostofthedatathatisusedfortrainingthecurrentgenerationoffoundationmodelsiscopyrightedmaterial.Forexample,

Bandy&Vincent

(

2021

)pointedoutthattheBookCorpuscontainscopyrighteddataunderrestrictivelicensesandhasbeenusedtotrainlargefoundationmodelsincludingGPT-3(

Brownetal.

,

2020

)andBERT(

Devlinetal.

,

2018

).

Similarly,ThePile(Gaoetal

.,

2020

)containsBooks3,adatasetofcopyrightedandcommerciallysoldbooksdownloadedfromBibliotik,atorrenttrackerforbooksandlearningmaterials(

Presser

,

2020

;

Bidermanetal.

,

2022

).Moregenerally,mostfoundationmodelsaretrainedondataobtained

fromwebcrawlslikeC4(Raffeletal

.,

2019

)orOpenWebText(

Gokaslan&Cohen

,

2019

).Sincemostonlinecontenthascopyrightprotectionsattachedatcreation,usingthemforcertainpurposescouldbeconsideredinfringement.

6

Researchers,atleastintheUnitedStates,havelongreliedonthelegaldoctrineoffairusetoavoidliabilityfromusingcopyrighteddata.Fairuseallowsthepublictousecopyrightedmaterialforcertaintypesofpurposes—evenwithoutalicense—especiallywhentheend-productistransformative.Forexample,whenreleasingpotentiallycopyrightedcontentinthepast,individualsandorganizationshavereliedonroughguessesforwhatconstitutesfairuse.Acommonapproachistoreleasesnippets:5-grams(

PublicResource

,

2021

),11-grams(

Brown&Mercer

,

2013

),orseveralpages(

AuthorsGuild,Inc.v

.Google,Inc.,

2dCir.2015

).

Lemley&Casey

(

2020

)havepointedoutthattrainingamachinelearningmodeloncopyrighteddataislikelyconsideredfairuseincircumstanceswherethefinalmodeldoesnotdirectlygeneratecontent.Forexample,trainingamodelonacorpusofpopularbookssolelyforpredictingthesimilarityoftwopassagesistransformativeandlikelyfallsunderfairuse.

7

However,whenitcomestotraininganddeployingfoundationmodelsforgenerativeusecases,theanalysisbecomesmorecomplex.Thisisbecausethesemodelsareusuallycapableofgeneratingcontentsimilartocopyrighteddata,anddeployingthemcanpotentiallyimpacteconomicmarketsthatbenefittheoriginaldatacreators.Forthesescenarios,legalscholarsarguethatfairusemaynotapply(

Lemley&Casey

,

2020

;

Sobel

,

2017

;

Levendowski

,

2018

).

Byexpandingthecapabilitiesofmodels,machinelearningresearchersandpractitionershavestumbledintothemuddywatersoffairuse.Asaresult,websiteslikeGettyImageshavebannedAI-generatedcontent(

Vincent

,

2022

),andlawsuitshavebeenfiledagainstproductsusingfoundationmodels,namelyGitHubCopilotandStableDiffusion(

DOE

1v

.GitHub,Inc.,

N.D.Cal.2022

;

Andersenetal.v

.StabilityAIetal.,

N.D.Cal.2023

;

Vincent

,

2023

).Inthiswork,weshedlightonthissubjectmatterformachinelearningresearchersandhighlightthatsignificantadditionalworkisrequiredtode-riskfoundationmodeldeploymentsforgenerativeusecases,focusingprimarilyonU.S.laws.

First,weprovideanoverviewofU.S.caselawonthefairusedoctrine.

8

Wedrawanalogiestofoundationmodelusecases.Wesupplementthesewithareviewofpriorexperiments,aswellasnovelexperiments,andillustratethatfoundationmodelscanproducecontentthatissufficientlysimilartocopyrightedmaterial.Furthermore,thecaselawsuggeststhatevencertaintypesoftransformationsofthetrainingdatawouldnotbeconsideredfairuse.Thus,theriskofinfringementisreal,andfairusewillnotcovereveryscenariowhereafoundationmodeliscreatedorused.Theexactamountofriskisunclear,andthelawwillevolvewithongoinglitigation.

Second,weoverviewtechnicalmitigationstrategiesthatwillreducethisriskinaccordancewiththecurrentstateofthefairusedoctrine.

Grimmelmann

(

2015

)statedthat“payingattentiontoroboticreadershiprefocusesourattentiononthereallyfundamentalquestions:whatiscopyright,andwhatisitfor?Tosaythathumanreaderscountandrobotsdon’tistosaysomethingdeepaboutthenatureofreadingasasocialpractice,andaboutwhatwewantrobots—andhumans—tobe.”

Lemley&Casey

(

2020

)suggestedthathumansandAIshouldbeheldtosimilarstandardswhenitcomestocopyright.Ifthisisthecase,itisthejobofmachinelearningresearchersandpractitioners,workingtogetherwithlegalpractitioners,toensurethatfoundationmodelscreatetransformativecontentwhichwouldpassmusterunderthesamefairuseanalysisasprovidedtoahuman.Togetthere,newstrategiesandtechniqueswillneedtobedeveloped,takingstepstoensurethatfoundationmodelsbehaveinmoretransformativeandnovelways.Wecallformoreresearchtoaligntechnicalmitigationstrategieswithfairuse,includingbetteroutputfilteringmechanismsrelyingonhigher-levelsemanticsandnewinnovationintraining-timetechniqueslikeextraction-preventativelearningfromhumanfeedback.Developingthesemitigationstrategiesisanimportantresearchchallengeformachinelearningandnaturallanguageprocessingandwouldbringpracticesinthetwofieldsintobetteralignmentwiththelaw.

6Wenotethattherearenuancestoeventheinfringementpoint,sincesomeusesthatrespectrobots.txtspecificationsmighthaveanimpliedlicenseasdescribedin

Fieldv

.Google,Inc.(

D.Nev.2006

).Thisisunlikelytoapplytoallgeneratedmodeloutputs,however,andwediscussthisfurtherin§

4.1

.

7Thoughrecentlitigationpointsoutthatnocourthasactuallyweighedinonthematterofwhethermodeltrainingisfairuse(

DOE

1v

.GitHub,Inc.,

N.D.Cal.2022

,Complaintat23).

8WeexamineU.S.fairusedoctrine,ratherthaninternationaldoctrines,fortworeasons.First,companieshavespecificallypointedtofairuseasadefensefortheiruseoffoundationmodels.Forexample,formerGithubCEONatFriedmanpointedtofairusewhenreferringtoGithub’sCopilotdeployment.See

/natfriedman/status/1409914420579344385

Second,theexpertiseoftheauthorsisinU.S.law.

FoundationModelsandFairUseAPREPRINT

3

Lastly,wearguethataco-evolutionoftechnicalmitigationstrategiesandlawcanhelpestablishamiddlegroundwherethepositiveimpactoffoundationmodelsisrealizedwhilereducingtheharmstodatacreators’intellectualpropertyrights.Withthecurrentuncertaintiesoffairusedoctrine,as

Sobel

(

2017

)andothersnoted,thelawmayswaytooneextremeoranother.OnonehanditcouldleadtooverlypermissiveinterpretationsoffairusethatcouldallowanygenerativeAIuse,disregardingtherightsofdatacreators.Oritcouldleadtooverlyrestrictiveinterpretationsoffairusethatcouldbroadlypreventfoundationmodeltraininganduse,concentratingpoweramongentitiesthathavealreadyacquiredvastquantitiesoflicenseddata.Bydevelopinganddeployingstrongtechnicalmitigationstrategies,itmaybepossibletolessentheriskofsuchextremelegaloutcomes.Andthelawshouldtakeintoaccounttheexistenceandstrengthofsuchtechnicalmitigationstrategies.Thiscouldinvolveamulti-prongedapproach:consideringtechnicalmitigationsinfairuseassessments,clarifyingthestatusofDMCAprotectionsforfoundationmodels,ordevelopingDMCA-likesafeharborsfordeploymentsthatusestrongtechnicalmitigationefforts,pursuingpolicystrategiesforreducingharmstolabor,andmore.Realizingthismiddlegroundrequirestheparticipationofamuchbroadercommunityincludingthedatacreatorsimpactedbyfoundationmodels,technologists,legalprofessionals,amongmanyothers.Weencouragemoremultidisciplinaryworktofurthertheco-evolutionoflaw,policy,andtechnicalmethodsformitigatingintellectualpropertyharms.

Overall,thegoalofthisworkistoactbothasaguideandcall-to-actionforMLresearchersandpractitionerstoactivelypursuetechnicalmitigationstrategies.Wehopethatthisguidehelpsinstillabetterunderstandingthatfairuseisnotapanacea,andthatanuancedcomprehensionofthelegallandscape’sintricaciesisvitaltoeffectivelynavigatepotentialpitfallsanduncertainties.Furthermore,thisworkmayalsoproveusefultolawyersandpolicymakers,providingthemwithmoreinsightintopotentialtechnicaldetailsoffoundationmodels,includingtechnicalmitigationstrategies,andhowtheymightplayaroleinthedevelopinglegalbestpracticesandpotentialreforms.

2FoundationModelsandFairUse

Wefirstbrieflydefinefoundationmodelsandintroducefairuselawaswellasitsapplicabilitytofoundationmodels.Toprovideabetterunderstandingoftherisks,wethenexamineconcreteprecedentialcasesrelatedtofairuseandhowtheymightapplytofoundationmodels.Weconductthisanalysisforcasesrelatedtotext,code,andvisualart.ToaccompanyourexaminationofU.S.caselaw,weincludehypotheticalscenariosofmodeldeploymentsandhowtheymightexceedtheboundsofthefairusedoctrineundercurrentlaw.Wealsoprovideexperimentstoshowthatcurrentfoundationmodelsarecapableofgeneratingcontentthatisnottransformative.

Thissectionproceedsasfollows.Section

2.1

providesabriefoverviewoffoundationmodels.Section

2.2

providesdefinitionsofactorsinvolvedinthefoundationmodeldevelopmentanddeploymentprocessandwhatrolestheyplay.Section

2.3

providesahigh-leveloverviewoffairusedoctrineintheUnitedStates.Sections

2.4

,

2.5

,and

2.6

providein-depthexamplesofcaselawandfoundationmodelscenariostohelpelucidatepotentialrisks.

2.1FoundationModels

Foundationmodelsaremachinelearningmodelstrainedonbroaddata(typicallyscrapedfromtheinternet)generallyusingself-supervisionatscale(

Bommasanietal.

,

2021

).Mostfoundationmodelsarenottrainedtoaccomplishspecifictasksbutrathertocaptureusefulgeneralinformationinthedata.Forinstance,mostautoregressivelypretrainedlanguagemodels(e.g.,GPT-3(

Brownetal.

,

2020

),PaLM(

Chowdheryetal

.,

2022

),orChinchilla(

Hoffmannetal.

))aretrainedtopredictthenextwordgivenasequence.Mosttext-to-imagemodels,forexampleDALL·

E(Rameshetal

.,

2021

),aretrainedtocapturethedistributionofimagesgivenatextprompt.Thesemodelscanthenbetunedtoalignmorewithhumanpreferences(

Ouyangetal

.,

2022

)orbeadaptedforspecifictasks.Foundationmodelscanbeusedforgeneratingcontent.ThisincludesmodelslikeGPT-3(

Brownetal.

,

2020

)fortext,Codex(

Chenetal.

,

2021

)forcode,andDALL·

E(Rameshetal

.,

2021

)forimages.Alternatively,theycanbeusedfornon-generativepurposes.Thesewouldtypicallyoutputonevalue,ratherthanhavingalongerfree-formoutput.Forexample,theymightclassifytextindifferentways,orpredictanumericalvaluefromanimage.Thisincludes(forthemostpart)modelslikeBERT(

Devlin

etal.

,

2018

)orCLIP(

Radfordetal.

,

2021

).Importantly,mostfoundationmodelscanbemodifiedtooperateforeithertypeoftask,andmanytaskswillbesomewhereonthespectrumbetweengenerativeandnon-generativetasks.

9

9Thisspectrumbetweengenerativeandnon-generativetasksisimportanttounderstandasitmayhavesomeimpactonthefairuseanalysisandwediscusshowtechnicalmitigationstrategiescantakethisintoaccountinSection

4.1

.

FoundationModelsandFairUseAPREPRINT

4

Millionsofusersnowusefoundationmodelproducts.ChatGPT,ageneralistchatbotfromOpenAI,hasgrowntoanestimated100Mdailyactiveusers.

10

Midjourney’susersproducemillionsofgeneratedimagesperday.

11

Asfoundationmodelsareexpandedintomoreproducts,deploymentswillonlyscaletomoreandmoreusers.AnincreasinglygrowinglistofcompanieshasplanstodeploysimilarproductstoChatGPT,fromMicrosoft’sBingChat

12

toGoogle’sBard,

13

andmore.Wecategorizethehigh-profileinstancesbythedomainofthedatainTable

1

.

DomainProducts

Text

GeneralPurposeAPI(e.g.,

OpenAIGPTAPI

)orgeneralchat-basedagents(e.g.,

ChatGPT

)

Writeblogsandmarketingmaterial(e.g.,

copy.ai

)

Customgeneratedstories(e.g.,

/

)

Text-basedadventuregames(e.g.,

https://aidungeon.io/

)

Code

Generatecode(e.g.,

GithubCoPilot

)

PairprogrammingwithanAIassistant(e.g.,

Replit

)

Images

Generateimagesfromtext(e.g.,

OpenAIDall-E

,

AzureOpenAIService

,

MicrosoftDesigner

,

StableDiffusion

,

Midjourney

)

Table1:WeenumerateasmallfractionofadvertisedfoundationmodeldeploymentsandproductsprovidedviaAPIsorotherinterfaces,demonstratingthatthesesystemsarebeingdeployedasproductsinawiderangeofareas.

2.2DefinitionsandRoles

Beforeourdiscussion,wedefineseveralactors.Thedatacreatorcreatesdatathatamodelmightbetrainedon.Thedatacuratorcollectsdataandadatahostdistributesdatathatamodelistrainedon.Themodelcreatortrainsthemodelonthisdata.ThemodeldeployerhostsamodelandprovidesaccesstoitviaanAPI,potentiallycreatingrevenuefromservingthemodel.Themodeluserusesthemodelfordownstreamtasks,potentiallycreatingrevenuewiththeoutputofthemodel.Theseactorsmayallbethesamepersonorentity,ortheymaybedifferentpeopleorentities.

Weprimarilydiscussthepotentialforadataintellectualproperty(IP)owner(thedatacreator)tobringacaseagainstfoundationmodeldeployers,users,andcreators.Whilethereiscertainlyrisksofliabilityfordatacurators,thishaslongbeendiscussedinotherwork.Wewillalsofocusonliabilityasaresultofthemodeloutputsthemselves,notthetrainingprocessorthemodelparameters.

14

Instead,wefocusonwhetherthoseweightscanbeusedinaninfringingwayandthusincurliability.

2.3FairUse

IntheUnitedStates,thelegaldoctrineoffairuseprovidessomerelieffromliabilityforusingcopyrightedmaterialwithoutalicense.Thefairusedefenseisdeterminedbyconsideringfourfactors:(1)thepurposeandcharacteroftheuse,includingwhethertheuseisofacommercialnatureorisfornonprofiteducationalpurposes(transformativeness);(2)thenatureofthecopyrightedwork(fairusestronglyfavorediforiginalworkisfactualasopposedtocreative);(3)theamountandsubstantialityoftheportionusedinrelationtothecopyrightedworkasawhole;(4)theeffectoftheuseuponthepotentialmarketfororvalueofthecopyrightedwork.See17U.S.C.§107.Itisimportanttonotethateveryfactorwillplaysomeroleinthecourt’sdecision-makingprocess,buttheinteractionbetweenthemisnotalwaysclear.

Wewillbrieflyprovideanoverviewofeachfairusefactorinthissection,butwestressthatfairusedoctrineismurkyandevolving.Inanycommonlawsetting,acase-by-casereviewhelpsoutlinethecontoursofthedoctrine,sowewillsubsequentlyreviewrelevantcaselawtohelpshinealightonhowfairusedoctrinemighthandlefoundationmodels.Withinthetopicswediscuss,weprovideadescriptivesurveyofthecurrentstateoffairusedoctrineandhowitcouldrelatetofoundationmodelstotheextentpossible.However,therewillbesignificantnuancesandroomtomaneuverdependingontheexactstructureofadeploymentandtrainingprocedure.

10

/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-20

23-02-01/

11

/2022/08/01/david_holz_midjourney/

12

/new

13

https://blog.google/technology/ai/bard-google-ai-search-updates/

14Seediscussionsby,e.g.,

McCann

(

2021

);

Lemley&Casey

(

2020

);

Grimmelmann

(

2015

);

Sobel

(

2017

)formoreexaminationofmodelparametersandmodeltraining.

FoundationModelsandFairUseAPREPRINT

5

Transformativeness.Whentheoriginalworkistransformative,thisweighsheavilyinfavoroffairuse.Empiricalstudieshavefoundthatthetransformativenessfactortendstobemostdispositiveinlegalanalysesandisheavilyemphasizedinassessmentsoffairuse(

Asayetal

.,

2020

).Forexample,whenGooglecopiedpartsoftheJavaAPIforAndroid,theSupremeCourtfoundthatthiswasfairuse.Ittookintoaccountthattheamountofcodecopied(asmallpercentageofthederivativecodebase),andtheendproductwastransformative(

GoogleLLCv

.OracleAmericaInc.,

2021

).Similarly,GoogleBookscanshowportionsofbookstousersbecausethepercentageofthedisplayedbookissmallandtheusecaseistransformative(fromtheoriginaluseofreadingabookcover-to-covertoanewusecaseofsearchingquicklythroughabook)(

AuthorsGuild,Inc.v

.Google,Inc.,

2dCir.2015

).

ForscenariosconcerningmachinelearningandAI,somelegalscholarsbelievethatfairusecoversmosttypesofmodeltrainingwheretheresultingmodelfunctionsdifferentlythantheinputdata,particularlywhenthemodeltargetsadifferenteconomicmarket(

Lemley&Casey

,

2020

;

Carroll

,

2019

).Inpart,theseargumentssometimesanalogizetocasesrelatedtointermediatecopying—aslongasthe“defendant’sendproductwasatransformativenewworkandthecopyingwasanecessarysteptogetthere,”thecopyingofcopyrightedmaterialiscoveredbyfairuse(

Lemley&Casey

,

2020

).Forfoundationmodelsthatarenotappliedinagenerativecontext,thisargumentcanbeagoodfit.Forexample,trainingarecommendationsystemorsearchengineoncopyrightedbooksislikelysufficientlytransformativefromthepurposeoftheoriginalbookanditstargetmarkets,andisthuslikelytobeconsideredfairuse—asinGoogleBooks.

However,thestorymaybedifferentforgenerativeusecases.ForgenerativemodelslikeDALL-EorGPTthatproducecreativeoutputs,thesituationislesslikelytobeproblematiciftheoutputsdonotcopyasubstantialportionofanyexistingwo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论