湘教版九年级数学上册单元测试题(含答案)_第1页
湘教版九年级数学上册单元测试题(含答案)_第2页
湘教版九年级数学上册单元测试题(含答案)_第3页
湘教版九年级数学上册单元测试题(含答案)_第4页
湘教版九年级数学上册单元测试题(含答案)_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘教版九年级数学上册单元测试题全套(含答案)第1章章末检测(时间:90分钟满分:100分)一、选择题(每小题4分,共40分)1.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.

y1<0<y2

B.

y2<0<y1

C.

y1<y2<0

D.

y2<y1<02.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则(

)A.

k1k2<0

B.

k1k2>0

C.

k1+k2<0

D.

k1+k2>03.下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A.

y=

B.

C.

y=﹣3x2

D.

xy=﹣24.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为(

)A.

4

B.

C.

5

D.

5.下列函数中,y是x的反比例函数的是()A.

y=x﹣1

B.

y=

C.

D.

y=6.对于函数y=﹣,下列说法错误的是(

)A.

它的图象分布在第二、四象限

B.

它的图象与直线y=x无交点

C.

当x>0时,y的值随x的增大而增大

D.

当x<0时,y的值随x的增大而减小7.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是(

)A.

k<3

B.

k≤3

C.

k>3

D.

k≥38.若y=2xm﹣5为反比例函数,则m=()A.

-4

B.

-5

C.

4

D.

59.反比例函数y=-的图象位于(

)A.

第一、二象限

B.

第一、三象限

C.

第二、四象限

D.

第三、四象限10.若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.

第一、三象限

B.

第一、二象限

C.

第二、四象限

D.

第三、四象限二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,过点M(﹣2,1)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为________.

12.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.13.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是________.

14.如图,点A为反比例函数y=图象上一点,过点A作AB⊥x轴于点B,连接OA,△ABO的面积为4,则k=________.15.已知y与2x﹣1成反比例,且当x=1时,y=2,那么当x=0时,y=________.16.已知双曲线y=经过点(﹣1,2),那么k的值等于________.17.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.

18.若y=是反比例函数,则m满足的条件是________

.三、解答题(共5小题,共36分)19.(6分)水池中蓄水90m2,现用放水管以x(m3/h)的速度排水,经过y(h)排空,求y与x之间的函数表达式,y是x的反比例函数吗?20.(7分)已知反比例函数的解析式为y=,确定a的值,求这个函数关系式.21.(8分)张华同学在一次做电学实验时,记录下电流I(安)与电阻R(欧)有如表对应关系:R…2481016…I…16843.22…通过描点、连线,观察并求出I与R之间的函数关系式.

22.(6分)已知反比例函数y=﹣.

(1)说出这个函数的比例系数;

(2)求当x=﹣10时函数y的值;

(3)求当y=6时自变量x的值.23.(9分)已知反比例函数y=(k为常数,k≠1).

(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;

(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;

(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.

参考答案一、选择题1.B2.A3.C4.B5.D6.D7.A8.C9.C10.A二、填空题11.612.813.R≥3W14.-815.﹣216.-317.218.4三、解答题19.解:由题意,得

y=,

y是x的反比例函数.20.解:由反比例函数的解析式为y=,得

,解得a=3,a=﹣3(不符合题意要舍去).21.解:如图,

由图可知I与R之间满足反比例函数关系,设I=,

将(2,16)代入,得k=32,

故I=.22.解:(1)原式=,比例系数为﹣;

(2)当x=﹣10时,y=﹣.

(3)当y=6时,﹣=6,解得,x=﹣.23.解:(Ⅰ)由题意,设点P的坐标为(m,2).

∵点P在正比例函数y=x的图象上,

∴2=m,即m=2.

∴点P的坐标为(2,2).

∵点P在反比例函数y=的图象上,

∴2=,解得k=5.

(Ⅱ)∵在反比例函数y=图象的每一支上,y随x的增大而减小,

∴k﹣1>0,解得k>1.

(Ⅲ)∵反比例函数y=图象的一支位于第二象限,

∴在该函数图象的每一支上,y随x的增大而增大.

∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,

∴x1>x2.第2章章末检测时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<eq\f(1,3)B.k>eq\f(1,3)C.k<eq\f(1,3)且k≠0D.k>-eq\f(1,3)且k≠02.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1-x)2=315C.560(1-2x)2=315D.560(1-x2)=3153.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,-2B.-4,-2C.4,2D.-4,24.已知y=eq\r(k-1)x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根5.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32B.126C.135D.1446.下列方程,是关于x的一元二次方程的是()A.(x+1)2=2(x+1)B.eq\f(1,x2)+eq\f(1,x)-2=0C.ax2+bx+c=0D.x2+2x=x2-17.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2的值为()A.-4B.3C.-eq\f(4,3)D.eq\f(4,3)8.使得代数式3x2-6的值等于21的x的值是()A.3B.-3C.±3D.±eq\r(3)9.用配方法解下列方程,配方正确的是()A.2y2-7y-4=0可化为2eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(7,2)))eq\s\up12(2)=eq\f(81,8)B.x2-2x-9=0可化为(x-1)2=8C.x2+8x-9=0可化为(x+4)2=16D.x2-4x=0可化为(x-2)2=410.方程x-2=x(x-2)的解是()A.x1=x2=1B.x1=0,x2=2C.x1=x2=2D.x1=1,x2=2二、填空题(每小题3分,共24分)11.把一元二次方程(x-3)2=4化为一般形式是____________,其中二次项为_______,一次项系数为_______,常数项为_______.12.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a+b的值是________.13.如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是__________.14.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于________.15.若a为方程x2+x-5=0的解,则a2+a+1的值为________.16.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若xeq\o\al(2,1)+xeq\o\al(2,2)=4,则m的值为____________.17.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请_______支球队参加比赛.18.如图,邻边不相等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是________m(可利用的围墙长度超过6m).三、解答题(共66分)19.(6分)解下列方程:(1)(2x-1)2=9;(2)x2+3x-4=0;(3)2x2+5x-1=0.20.(6分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2-4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+eq\f(b,a)x=-eq\f(c,a),……第一步x2+eq\f(b,a)x+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,2a)))eq\s\up12(2)=-eq\f(c,a)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,2a)))eq\s\up12(2),……第二步eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(b,2a)))eq\s\up12(2)=eq\f(b2-4ac,4a2),……第三步x+eq\f(b,2a)=eq\r(,\f(b2-4ac,4a2)),……第四步x=eq\f(-b+\r(,b2-4ac),2a).……第五步(1)嘉淇的解法从第_______步开始出现错误;事实上,当b2-4ac>0时,方程ax2+bx+c=0(a≠0)的求根公式是__________.(2)用配方法解方程:x2-2x-24=0.21.(8分)已知实数a,b是方程x2-x-1=0的两根,求eq\f(b,a)+eq\f(a,b)的值.22.(8分)菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予九折优惠.试求小华购买蔬菜所需的费用.23.(9分)已知关于x的方程mx2-(m+2)x+2=0.(1)求证:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根?24.(9分)如图,某新建火车站站前广场需要绿化,该项绿化工程中有一块长为20米、宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56平方米,两块绿地之间及周边留有宽度相等的人行通道(如图),问人行通道的宽度是多少米?25.(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是______________斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26.(10分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问:(1)P、Q两点从开始出发多长时间时,四边形PBCQ的面积是33cm2?(2)P、Q两点从开始出发多长时间时,点P与Q之间的距离是10cm?参考答案1.A2.B3.D4.A5.D6.A7.D8.C9.D10.D11.x2-6x+5=0x2-6512.-113.m<-414.215.616.-1或-317.718.1解析:设AB长为xm,则BC长为(6-2x)m.依题意得x(6-2x)=4,解得x1=1,x2=2.当x=1时,6-2x=4;当x=2时,6-2x=2(舍去).即AB的长度为1m.19.解:(1)x1=2,x2=-1;(2分)(2)x1=-4,x2=1;(4分)(3)x1=eq\f(-5+\r(33),4),x2=eq\f(-5-\r(33),4).(6分)20.解:(1)四x=eq\f(-b±\r(,b2-4ac),2a)(2分)(2)x2-2x=24,x2-2x+1=24+1,(x-1)2=25,(4分)x-1=±5.∴x1=6,x2=-4.(6分)21.解:∵实数a,b是方程x2-x-1=0的两根,∴a+b=1,ab=-1,(4分)∴eq\f(b,a)+eq\f(a,b)=eq\f(b2+a2,ab)=eq\f((a+b)2-2ab,ab)=-3.(8分)22.解:(1)设平均每次下调的百分率为x,由题意得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).答:平均每次下调的百分率为20%.(4分)(2)3.2×0.9×5000=14400(元).(7分)答:小华购买蔬菜所需费用为14400元.(8分)23.(1)证明:∵当m≠0时,Δ=(m+2)2-8m=m2-4m+4=(m-2)2.∵(m-2)2≥0,∴Δ≥0,即方程有实数根.(3分)当m=0时,原方程变形为-2x+2=0,即x=1.∴不论m为何值时,方程总有实数根;(5分)(2)解:解方程得x=eq\f(m+2±(m-2),2m),x1=eq\f(2,m),x2=1.(7分)∵方程有两个不相等的正整数根,∴m=1或2,当m=2时,Δ=0,不合题意,∴m=1.(9分)24.解:设人行通道的宽度为x米,则根据题意,得(20-3x)(8-2x)=56,解得x1=2,x2=eq\f(26,3).(6分)当x=eq\f(26,3)时,8-2x<0,故舍去,∴x=2.(8分).答:人行通道的宽为2米.(9分)25.解:(1)(100+200x)(3分)(2)根据题意得(4-2-x)(100+200x)=300,解得x1=eq\f(1,2),x2=1.(6分)∵每天至少售出260斤,当x=eq\f(1,2)时,100+200x=200<260,当x=1时,100+200x=300>260,∴x=1.(9分)答:张阿姨需将每斤的售价降低1元.(10分)26.解:(1)设经过xs,则BP=(16-3x)cm,CQ=2xcm.由题意得(16-3x+2x)×6×eq\f(1,2)=33,解得x=5.(3分)答:经过5s,四边形PBCQ的面积是33cm2.(4分)(2)设出发ts,点P与点Q之间的距离是10cm,则BP=(16-3t)cm,CQ=2tcm.过Q作QH⊥AB于H,∴HQ=AD=6cm,PH=|16-5t|cm.(6分)在Rt△PQH中,由勾股定理得PH2+HQ2=PQ2,即(16-5t)2+62=102,解得t1=1.6,t2=4.8.即出发1.6s或4.8s时,点P与Q之间的距离是10cm.(10分)第3章章末检测(时间:90分钟满分:120分)一.选择题(每小题3分,共30分)1.如果=,那么的值是() A. B. C. D. 2.下列各组中的四条线段成比例的是() A.a=,b=3,c=2,d= B. a=4,b=6,c=5,d=10 C.a=2,b=,c=2,d= D. a=2,b=3,c=4,d=13.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=() A.﹣1 B. (+1) C. 3﹣ D. (﹣1)4.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是() A.8 B. 10 C.11 D.125.已知,△ABC∽△DEF,△ABC与△DEF的面积之比为1:2,当BC=1,对应边EF的长是() A. B. 2 C. 3 D. 46.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O点,对于各图中的两个三角形而言,下列说法正确的是() A.只有(1)相似 B.只有(2)相似 C.都相似 D.都不相似7.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于() A. B. C. D.8.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是() A.5.4m B. 6m C. 7.2m D. 9m第10题图第9题图第8题图第10题图第9题图第8题图9.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为() A.(1,2) B. (1,1) C. (,) D. (2,1)10.如图,△ABC中,点D在线段AB上,且∠BAD=∠C,则下列结论一定正确的是() A.AB2=AC•BD B.AB•AD=BD•BC C.AB2=BC•BD D.AB•AD=BD•CD二.填空题(每小题4分,共32分)11.已知≠0,则的值为.12.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为.13.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).14.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为.15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为.16.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=.第17题图第16题图第17题图第16题图第18题图第18题图17.如图,是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是,AC的长是.三.解答题(共58分)19.(8分)如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.20.(8分)已知:如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.求证:△ABD∽△DCE.21.(10分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求的值.22.(10分)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.23.(10分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?24.(12分)如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.C2.C3.A4.D5.A6.C7.A8.C9.B10.C二.填空题(共8小题)11.12.S1=S213.①②④⑤14.:115.4:116.1:3:517.818.42三.解答题(共6小题)19.解:(1)如图:(2)如图所示:(a)(a)(3)如图所示:(b)(b)△CC1C2的面积为×3×6=9.20.证明:∵∠BAC=90°,AB=AC=1,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°﹣∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.21.证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.22.解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.23.解:(1)∵四边形EGFH为矩形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为a在正方形EFGH中,EF∥BC,EG∥AD∴△AEF∽△ABC,△BFG∽△BAD∴,,∴,即.解得a=48.即正方形零件的边长为48.(3)设长方形的长为x,宽为y,当长方形的长在BC时,由(1)知:.∵,∴当,即x=60,y=40,xy最大为2400.当长方形的宽在BC时,,∵,∴当,即x=40,y=60,xy最大为2400,又∵x≥y,所以长方形的宽在BC时,面积<2400综上,长方形的面积最大为2400.24.解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=﹣4+2或﹣4﹣2,则P点坐标为(0,﹣2﹣4)或(0,﹣4+2)(不合题意舍去).∴点P的坐标为:(0,2)或(0,6)或(0,12)或(0,﹣4+2)或(0,﹣2﹣4).第4章章末检测(时间:90分钟满分:120分)一、选择题(每小题3分,共36分)1.在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是(

)A.

B.

C.

D.

2.下列计算正确的是(

)A.

sin60°﹣sin30°=sin30°

B.

sin245°+cos245°=1

C.

cos60

D.

cos303.在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于(

)A.

B.

C.

D.

4.在△ACB中,AB=10,sinA=,则BC的长为(

)A.

6

B.

7.5

C.

8

D.

不能确定5.在△ABC中,若|sinA-|+(cosB-)2=0,则∠C的度数是()A.

30°

B.

45°

C.

60°

D.

90°6.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B,C两地相距120海里.若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,则此时“中国海监50”的航行距离是(

A.

40

B.

60﹣20

C.

20

D.

207.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是(

)A.

B.

C.

D.

8.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()

A.

24米

B.

20米

C.

16米

D.

12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)(

A.

34.14米

B.

34.1米

C.

35.7米

D.

35.74米10.在Rt△中,∠C=90°,BC=1,那么AB的长为(

)A.

B.

C.

D.

11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()

​A.

B.

C.

D.

​12.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是(

A.

B.

C.

D.

二、填空题(每小题4分,共40分)13.河堤横断面如图,堤高BC=5米,迎水坡AB的坡度是1:(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是________

14.在正方形的网格中,△ABC的位置如图,则tanB的值为________.

15.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.16.王小勇操纵一辆遥控汽车从A处沿北偏西60°方向走10m到B处,再从B处向正南方走20m到C处,此时遥控汽车离A处________

m.17.如图,BD⊥AC于点D,DE∥AB,EF⊥AC于点F,若BD平分∠ABC,则与∠CEF相等的角(不包括∠CEF)的个数是________.

​18.AE、CF是锐角三角形ABC的两条高,若AE:CF=3:2,则sinA:sinC等于________

.19.如图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是________km.

20.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为________.21.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为________cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).

22.计算:2sin45°=________.三、解答题(共3题,共44分)23.(14分)如图,海面上B、C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A、B两岛之间的距离.(结果精确到0.1海里)

【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】

​24.(14分)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:≈1.73)

25.(16分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.

参考答案一、选择题1.A2.B3.C4.D5.D6.B7.D8.D9.C10.D11.B12.C二、填空题13.10m14.15.216.1017.418.2:319.(20﹣20)20.421.14.122.三、解答题23.解:由题意得,AC=18×2=36海里,∠ACB=43°.

在Rt△ABC中,∵∠A=90°,

∴AB=AC•tan∠ACB=36×0.93≈33.5海里.

故A、B两岛之间的距离约为33.5海里.24.解:过D作DE⊥BC于E,作DF⊥AB于F,

设AB=x,

在Rt△DEC中,∠DCE=30°,CD=100,

∴DE=50,CE=50.

在Rt△ABC中,∠ACB=45°,

∴BC=x.

则AF=AB﹣BF=AB﹣DE=x﹣50,

DF=BE=BC+CE=x+50.

在Rt△AFD中,∠ADF=30°,tan30°=,

∴,

∴x=50(3+)≈236.5.

经检验:x=50(3+)是原分式方程的解.

答:山AB的高度约为236.5米.25.(1)解:∵∠BDC=45°,∠C=90°,

∴BC=DC=20m.

答:建筑物BC的高度为20m.

(2)解:设DC=BC=xm,

根据题意可得:tan50°==≈1.2,

解得:x=25.

答:建筑物BC的高度为25m.第5章章末检测(时间:45分钟满分:100分)一、选择题(本大题共8个小题,每小题3分,共24分)1.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件某鞋店试销一款女鞋,试销期间对不同颜色鞋的销量情况统计如下表:颜色黑色棕色白色红色销售量(双)75453255鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A.平均数B.众数C.中位数C.以上都不是3.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定4.去年某校有1500人参加中考,为了了解他们的数学成绩.从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名B.450名C.475名D.500名5.某校对460名初三学生进行跳绳技能培训,以提高同学们的跳绳成绩.为了解培训的效果,随机抽取了40名同学进行测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,从图中可以估计出该校460名初三学生中,能获得跳绳“优秀”的总人数大约是()A.10B.16C.115D.1506.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(单位:棵)456810人数302225158若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总棵数是()A.58B.580C.1160D.58007.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50%B.55%C.60%D.65%8.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()A.45个B.48个C.50个D.55个二、填空题(本大题共6个小题,每小题3分,共18分)9.为了考察甲、乙两种油菜花的长势,分别从中抽取了20株测得其高度,并求得它们的方差分别为s甲2=3.6米2,s乙2=12.8米2,则种油菜花长势比较整齐.10.从某市5000份试卷中随机抽取了400份试卷,其中有360份成绩合格,估计全市成绩合格的人数约为.11.从某校参加毕业会考的学生中,随机抽查了20名学生的数学成绩,分数如下:90848886987861541009795847071778572637948可以估计该校这次参加毕业会考的数学平均成绩为.12.某学校为了做好道路交通安全教育工作,随机抽取本校100名学生就上学的交通方式进行调查,根据调查结果绘制扇形图如图所示.若该校共有1000名学生,请你估计全校步行上学的学生人数约有人.13.漳州市某校在开展庆“六

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论