中考数学(相似提高练习题)压轴题训练及答案解析_第1页
中考数学(相似提高练习题)压轴题训练及答案解析_第2页
中考数学(相似提高练习题)压轴题训练及答案解析_第3页
中考数学(相似提高练习题)压轴题训练及答案解析_第4页
中考数学(相似提高练习题)压轴题训练及答案解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、相似真题与模拟题分类汇编(难题易错题)1.综合题

(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=43【答案】(1)解:∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=12BC,ED=1又∠B=90°,∴四边形FEDB是矩形,则S矩形(2)解:∵PN∥BC,∴△APN∽△ABC,∴PNBC=AE∴PN=a-ah设PQ=x,则S矩形PQMN=PQ•PN=x(a-ahx)=-ahx2+ax=-ah(x-h2)∴当PQ=h2时,S矩形PQMN最大值为a(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵{∠∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=AB+AF2∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为12×BG•12BF=12答:该矩形的面积为720;(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=43∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=12∵tanB=EHBH=4∴EH=43BH=4在Rt△BHE中,BE=EH∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为14BC•EH=1944cm2答:该矩形的面积为1944cm2.【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF=12BC,ED=12AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式PNBC=AEAD,即PNa=h-PQh,解得PN=a-ahPQ,设PQ=x,则S矩形PQMN(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得△CDG≌△HDE,则CG=HE=20,所以BI=AB+AF2=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为12×BG•12BF=(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,则EB=EC,由等腰三角形的三线合一可得BH=CH=12BC=54cm;由tanB可求得EH=43BH=43×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为2.如图,已知:在Rt△ABC中,斜边AB=10,sinA=45PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;

(2)若四边形PMQN为菱形,求CQ;

(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA=45∴BC=8,则AC=AB∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ=12(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴12×AB×CP=1则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴PBPC=BMMQ=BMMP=BQQC,即解得,CQ=24(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ

,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴CPBC=CQCP=∴CPBC=BQ∴CP=4×BQBM=4×5∴CQ=258∴BQ=8﹣258=39∴BM=45×398=∴AP=AB﹣PB=AB﹣2BM=11【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ=3;(2)当四边形PMQN为菱形时,因为∠APC=90°,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以PBPC=(3)当QM垂直平分PB时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得QC=258,所以BM=393.如图,在矩形ABCD中,AD=5,CD=4,点E是BC边上的点,BE=3(1)求证:△ABE≌△(2)连接CF,求sin∠(3)连接AC交DF于点G,求AGGC【答案】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠B=90°,AB=CD=4,∵DF⊥AE,∴∠AFD=90°,∴∠BAE+∠EAD=∠EAD+∠ADF=90°,∴∠BAE=∠ADF,在Rt△ABE中,∵AB=4,BE=3,∴AE=5,在△ABE和≌△DFA中,{∠∴△ABE≌△DFA(AAS).(2)解:连结DE交CF于点H,∵△ABE≌△DFA,∴DF=DC=4,AF=BE=3,∴CE=EF=2,∴DE⊥CF,∴∠DCF+∠HDC=∠DEC+∠HDC=90°,∴∠DCF=∠DEC,在Rt△DCE中,∵CD=4,CE=2,∴DE=25,∴sin∠DCF=sin∠DEC=CDDE(3)过点C作CK⊥AE交AE的延长线于点K,∵DF⊥AE,∴CK∥DF,∴AGGC在Rt△CEK中,∴EK=CE·cos∠CEK=CE·cos∠AEB=2×35=6∴FK=FE+EK=2+65=16∴AGGC=AFFK=【解析】【分析】(1)由矩形的性质,垂直的性质,同角的余角相等可得∠BAE=∠ADF,在Rt△ABE中,根据勾股定理可得AE=5,由全等三角形的判定AAS可得△ABE≌△DFA.(2)连结DE交CF于点H,由(1)中全等三角形的性质可知DF=DC=4,AF=BE=3,由同角的余角相等得∠DCF=∠DEC,在Rt△DCE中,根据勾股定理可得DE=25,根据锐角三角函数定义可得答案.(3)过点C作CK⊥AE交AE的延长线于点K,由平行线的推论知CK∥DF,根据平行线所截线段成比例可得AGGC=AF4.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AG∶BE的值为

:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC=________.【答案】(1)证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形2

(2)解:连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,CECG=cos45°=22、CBCA∴CGCE=CA∴△ACG∽△BCE,∴AGBE∴线段AG与BE之间的数量关系为AG=2BE

(3)35【解析】【解答】(1)②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE∴AGBE故答案为:2;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AGAC设BC=CD=AD=a,则AC=2a,则由AGAC=GH∴AH=23则DH=AD﹣AH=13a,CH=CD2∴由AGAC=AH解得:a=35,即BC=35,故答案为:35.【分析】(1)①根据正方形的性质得出∠BCD=90°,∠BCA=45°,根据垂直的定义及等量代换得出∠CEG=∠CFG=∠ECF=90°,根据三个角是直角的四边形是矩形得出四边形CEGF是矩形,根据三角形的内角和得出∠CGE=∠ECG=45°,根据等角对等边得出EG=EC,根据有一组邻边相等的矩形是正方形即可得出四边形CEGF是正方形;②根据正方形的性质得出GE∥∥CD,根据平行于同一直线的两条直线互相平行得出GE∥AB,根据平行线分线段成比例定理得出GC∶EC=AG∶BE,根据等腰直角三角形的边之间的关系得出GC∶EC=2,从而得出答案;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,根据余弦函数的定义得出CECG=cos45°(3)根据∠CEF=45°,点B、E、F三点共线,由邻补角定义得出∠BEC=135°,根据△ACG∽△BCE,得出∠AGC=∠BEC=135°,故∠AGH=∠CAH=45°,然后判断出△AHG∽△CHA,根据相似三角形对应边成比例得出AG∶AC=GH∶AH=AH∶CH,设BC=CD=AD=a,则AC=

2a,根据比例式得出关于AH的方程,求解AH的值,根据DH=AD﹣AH表示出DH,根据勾股定理表示出CH,根据前面的比例式得出关于a的方程,求解得出a的值,从而得出BC的值。5.如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.(1)设点P的纵坐标为p,写出p随k变化的函数关系式.(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;(3)是否存在使△AMN的面积等于3225【答案】(1)解:∵y轴和直线l都是⊙C的切线,∴OA⊥AD,BD⊥AD;又∵OA⊥OB,∴∠AOB=∠OAD=∠ADB=90°,∴四边形OADB是矩形;∵⊙C的半径为2,∴AD=OB=4;∵点P在直线l上,∴点P的坐标为(4,p);又∵点P也在直线AP上,∴p=4k+3(2)解:连接DN.∵AD是⊙C的直径,∴∠AND=90°,∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,∴∠ADN=∠ABD,又∵∠ADN=∠AMN,∴∠ABD=∠AMN,∵∠MAN=∠BAP,∴△AMN∽△ABP(3)解:存在.理由:把x=0代入y=kx+3得:y=3,即OA=BD=3,AB=AD∵S△ABD=12AB•DN=12AD•DB∴DN=AD⋅DBAB=4×35=∵△AMN∽△ABP,∴S△AMNS当点P在B点上方时,∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1),或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=12PB•AD=1∴S△整理得:k2﹣4k﹣2=0,解得k1=2+6,k2=2﹣6当点P在B点下方时,∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=12PB•AD=1∴S△化简得:k2+1=﹣(4k+3),解得:k=﹣2,综合以上所得,当k=2±6或k=﹣2时,△AMN的面积等于3225【解析】【分析】(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式;(2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA证明△AMN∽△ABP;(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2−4k−2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=−(4k+3),解关于k的一元二次方程.6.操作:ΔABC和ΔA'B'C'都是等边三角形,ΔA'B探究:(1)在上述三个图形中,AO:BO是否一个固定的值,若是,请选择任意一个图形求出这个比值;(2)AA(3)AA'与【答案】(1)解:∵ΔABC是等边三角形,由图(1)得AO⊥BC,BO=1∴AO=3BO,∴(2)证明:AO:BO=3:1,∠BO∴∠BO∴ΔAOA∴AA(3)证明:在图(3)中,由(2)得ΔAOA∴∠1=∴∠2+∠4=∠1+∠3,即∠AEF=∠AOB∵∠AOB=90°,∴∠AOB=∴AA【解析】【分析】(1)由等边三角形的性质可得AO⊥BC,BO=12BC=12AB,根据勾股定理计算即可求得AO=3BO,即AO∶BO是一个固定的值3∶1;(2)由等边三角形的性质可得AO⊥BC,A'O⊥B'O,由同角的余角相等可得∠BOB'7.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB=12∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴GHFH=QHGH,即∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴GHFO=FHCO,即32m+1∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=12(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得Rt△QGH∽Rt△GFH,则可得比例式GHFH②当∠CFG=90°时,同理可得另一个Q坐标。8.在△ABC中,D为AB边上一点,过点D作DE∥BC交AC于点E,以DE为折线,将△ADE翻折,设所得的△A(1)如图(甲),若∠C=90°,AB=10,BC=6,ADAB(2)如图(乙),若AB=AC=10,BC=12,D为AB中点,则y的值为________.(3)若∠B=30°,AB=10,BC=12,设①求y与x的函数解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论