![2020届全国各地高考试题分类汇编06平面向量_第1页](http://file4.renrendoc.com/view/24a9d2c33f46e152f379e96bdc8a3a53/24a9d2c33f46e152f379e96bdc8a3a531.gif)
![2020届全国各地高考试题分类汇编06平面向量_第2页](http://file4.renrendoc.com/view/24a9d2c33f46e152f379e96bdc8a3a53/24a9d2c33f46e152f379e96bdc8a3a532.gif)
![2020届全国各地高考试题分类汇编06平面向量_第3页](http://file4.renrendoc.com/view/24a9d2c33f46e152f379e96bdc8a3a53/24a9d2c33f46e152f379e96bdc8a3a533.gif)
![2020届全国各地高考试题分类汇编06平面向量_第4页](http://file4.renrendoc.com/view/24a9d2c33f46e152f379e96bdc8a3a53/24a9d2c33f46e152f379e96bdc8a3a534.gif)
![2020届全国各地高考试题分类汇编06平面向量_第5页](http://file4.renrendoc.com/view/24a9d2c33f46e152f379e96bdc8a3a53/24a9d2c33f46e152f379e96bdc8a3a535.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届全国各地高考试题分类汇编06平面向量1.(2020•北京卷)已知正方形的边长为2,点P满足,则_________;_________.【答案】(1).(2).【解析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,求得点的坐标,利用平面向量数量积的坐标运算可求得以及的值.【详解】以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,则点、、、,,则点,,,因此,,.故答案为:;.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点的坐标是解答的关键,考查计算能力,属于基础题.2.(2020•全国1卷)设为单位向量,且,则______________.【答案】【解析】整理已知可得:,再利用为单位向量即可求得,对变形可得:,问题得解.【详解】因为为单位向量,所以所以解得:,所以,故答案为:【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.3.(2020•全国2卷)已知单位向量,的夹角为45°,与垂直,则k=__________.【答案】【解析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k的值.【详解】由题意可得:,由向量垂直的充分必要条件可得:,即:,解得:.故答案为:.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.4.(2020•全国3卷)已知向量a,b满足,,,则()A. B. C. D.【答案】D【解析】计算出、的值,利用平面向量数量积可计算出的值.【详解】,,,.,因此,.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.5.(2020•江苏卷)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是________.【答案】【解析】根据题设条件可设,结合与三点共线,可求得,再根据勾股定理求出,然后根据余弦定理即可求解.【详解】∵三点共线,∴可设,∵,∴,即,若且,则三点共线,∴,即,∵,∴,∵,,,∴,设,,则,.∴根据余弦定理可得,,∵,∴,解得,∴的长度为.当时,,重合,此时的长度为,当时,,重合,此时,不合题意,舍去.故答案为:0或.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出.6.(2020•新全国1山东)已知P是边长为2的正六边形ABCDEF内的一点,则的取值范用是()A. B.C. D.【答案】A【解析】首先根据题中所给的条件,结合正六边形的特征,得到在方向上的投影的取值范围是,利用向量数量积的定义式,求得结果.【详解】的模为2,根据正六边形的特征,可以得到在方向上的投影的取值范围是,结合向量数量积的定义式,可知等于的模与在方向上的投影的乘积,所以的取值范围是,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.7.(2020•天津卷)如图,在四边形中,,,且,则实数的值为_________,若是线段上的动点,且,则的最小值为_________.【答案】(1).(2).【解析】可得,利用平面向量数量积的定义求得的值,然后以点为坐标原点,所在直线为轴建立平面直角坐标系,设点,则点(其中),得出关于的函数表达式,利用二次函数的基本性质求得的最小值.【详解】,,,,解得,以点为坐标原点,所在直线为轴建立如下图所示的平面直角坐标系,,∵,∴的坐标为,∵又∵,则,设,则(其中),,,,所以,当时,取得最小值.故答案为:;.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.8.(2020•浙江卷)设,为单位向量,满足,,,设,的夹角为,则的最小值为_______.【答案】【解析】利用复数模的平方等于复数的平方化简条件得,再根据向量夹角公式求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国普拉提行业上下游产业链全景、发展环境及前景研究报告
- 2.3声音的利用(课件)-【备课无忧】2022-2023学年八年级物理上册同
- 年薪合同范本(2025年度):教育机构校长年薪及教学质量提升协议
- 2025届高考【应试策略】数学
- 高考语言得体课件(公开课)
- 老舍《猫》课件(全课)
- 2025至2031年中国小瀑布加湿器行业投资前景及策略咨询研究报告
- 2025至2031年中国可焊接导电银胶行业投资前景及策略咨询研究报告
- 2025至2031年中国先织后镀网行业投资前景及策略咨询研究报告
- 《统计回归模型》课件
- GB/T 18268.1-2010测量、控制和实验室用的电设备电磁兼容性要求第1部分:通用要求
- GB 5009.228-2016食品安全国家标准食品中挥发性盐基氮的测定
- 多维完美主义量表(HMPS)
- 第三节对化学武器的防护
- 人教版高一物理必修二第六章《圆周运动》课后练习(有答案解析)
- 并联电容器课件
- 彼得圣吉:第五项修炼课件
- 施工进度计划-报审表本
- 基于单片机的老人跌倒报警装置获奖科研报告
- 色素性皮肤病
- 《社会主义市场经济理论(第三版)》第二章社会主义市场经济改革论
评论
0/150
提交评论