新疆阿克苏市沙雅县第二中学2022-2023学年数学高一第二学期期末检测模拟试题含解析_第1页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高一第二学期期末检测模拟试题含解析_第2页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高一第二学期期末检测模拟试题含解析_第3页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高一第二学期期末检测模拟试题含解析_第4页
新疆阿克苏市沙雅县第二中学2022-2023学年数学高一第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知水平放置的是按“斜二测画法”得到如图所示的直观图,其中,,那么原中的大小是().A. B. C. D.2.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.33.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交4.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.5.已知为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是()A.②③ B.①③ C.②④ D.①④6.在中,,是边上的一点,,若为锐角,的面积为20,则()A. B. C. D.7.一位妈妈记录了孩子6至9岁的身高(单位:cm),所得数据如下表:年龄(岁)6789身高(cm)118126136144由散点图可知,身高与年龄之间的线性回归方程为,预测该孩子10岁时的身高为A.154 B.153 C.152 D.1518.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.59.数列的通项公式为,则数列的前100项和().A. B. C. D.10.中,,则()A.5 B.6 C. D.8二、填空题:本大题共6小题,每小题5分,共30分。11.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.12.在数列中,已知,,记为数列的前项和,则_________.13.在△ABC中,已知30,则B等于__________.14.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.15.设变量x、y满足约束条件,则目标函数的最大值为_______.16.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?18.已知函数.(1)求函数的最小正周期;(2)若函数在的最大值为2,求实数的值.19.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.20.若,讨论关于x的方程在上的解的个数.21.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据斜二测画法还原在直角坐标系的图形,进而分析出的形状,可得结论.【详解】如图:根据斜二测画法可得:,故原是一个等边三角形故选【点睛】本题是一道判定三角形形状的题目,主要考查了平面图形的直观图,考查了数形结合的思想2、A【解析】

由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.3、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.4、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.5、B【解析】

利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.6、C【解析】

先利用面积公式计算出,计算出,运用余弦定理计算出,利用正弦定理计算出,在中运用正弦定理求解出.【详解】解:由的面积公式可知,,可得,为锐角,可得在中,,即有,由可得,由可知.故选.【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.7、B【解析】试题分析:根据题意,由表格可知,身高y与年龄x之间的线性回归直线方程为,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题.8、D【解析】

用等比数列的性质求解.【详解】∵是等比数列,∴,∴.故选D.【点睛】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.9、C【解析】

根据通项公式,结合裂项求和法即可求得.【详解】数列的通项公式为,则故选:C.【点睛】本题考查了裂项求和的应用,属于基础题.10、D【解析】

根据余弦定理,可求边长.【详解】,代入数据,化解为解得或(舍)故选D.【点睛】本题考查了已知两边及其一边所对角,求另一边,这种题型用余弦定理,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有(数学1,数学2,语文),(数学1,语文,数学2),(数学2,数学1,语文),(数学2,语文,数学1),(语文,数学1,数学2),(语文,数学2,数学1)共6个,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故2本数学书相邻的概率.12、【解析】

根据数列的递推公式求出该数列的前几项,找出数列的周期性,从而求出数列的前项和的值.【详解】对任意的,,.则,,,,,,所以,.,且,,故答案为:.【点睛】本题考查数列递推公式的应用,考查数列周期性的应用,解题时要结合递推公式求出数列的前若干项,找出数列的规律,考查推理能力和计算能力,属于中等题.13、【解析】

根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14、.【解析】

根据等积法可得∴15、3【解析】

可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)16、②④【解析】

利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)销量为件.【解析】

(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【点睛】本题主要考查线性回归方程的求法—最小二乘法,以及利用线性回归方程进行预测估计。18、(1);(2)或【解析】

(1)根据二倍角公式进行整理化简可得,从而可得最小正周期;(2)将通过换元的方式变为,;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得的值.【详解】(1)最小正周期(2)令,则由得①当,即时当时,由,解得(舍去)②当,即时当时,由得,解得或(舍去)③当,即时当时,,由,解得综上,或【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.19、(1)见解析;(2)【解析】

(1)作为棱的中点,连结,,通过证明平面可得.(2)根据等体积法:可求得.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分别为,的中点,∴,∴.又,∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴.又∵平面平面,且平面平面,平面,∴平面.∴.设点到平面,的距离.在中,,,则.又∵,∴,则.【点睛】本题考查了直线与平面垂直的判定与性质,考查了等体积法求点面距,属于中档题.20、答案不唯一,见解析【解析】

首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.21、(1)证明见解析;(2),或,.【解析】

(1)设,.由可得,则.又,故.因此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论