版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置中放一个单位正方体礼盒,现以点D为坐标原点,、、分别为x、y、z轴建立空间直角坐标系,则正确的是()A.的坐标为 B.的坐标为C.的长为 D.的长为2.若关于的不等式的解集为,则的取值范围是()A. B. C. D.3.已知数列,满足,若,则()A. B. C. D.4.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().5.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.6.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”7.已知向量,,则,的夹角为()A. B. C. D.8.方程的解所在的区间为()A. B.C. D.9.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.2010.在△ABC中,,,.的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则______.12.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.13.已知数列满足,,则______.14.函数的最小正周期为_______.15.若集合,,则集合________.16.若则的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知非零数列满足,.(1)求证:数列是等比数列;(2)若关于的不等式有解,求整数的最小值;(3)在数列中,是否存在首项、第项、第项(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.18.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x,y的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差,其中为的平均数)19.已知点,,动点满足,记M的轨迹为曲线C.(1)求曲线C的方程;(2)过坐标原点O的直线l交C于P、Q两点,点P在第一象限,轴,垂足为H.连结QH并延长交C于点R.(i)设O到直线QH的距离为d.求d的取值范围;(ii)求面积的最大值及此时直线l的方程.20.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.21.2021年广东新高考将实行“”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(1)小明随机选课,求他选择偏理方向及生物学科的概率;(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据坐标系写出各点的坐标分析即可.【详解】由所建坐标系可得:,,,.故选:D.【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.2、C【解析】
根据对数的性质列不等式,根据一元二次不等式恒成立时,判别式和开口方向的要求列不等式组,解不等式组求得的取值范围.【详解】由得,即恒成立,由于时,在上不恒成立,故,解得.故选:C.【点睛】本小题主要考查对数函数的性质,考查一元二次不等式恒成立的条件,属于基础题.3、C【解析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4、D【解析】
利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.5、B【解析】
写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.6、D【解析】
从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.7、A【解析】
由题意得,即可得,再结合即可得解.【详解】由题意知,则.,则,的夹角为.故选:A.【点睛】本题考查了向量数量积的应用,属于基础题.8、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.9、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、B【解析】
由正弦定理列方程求解。【详解】由正弦定理可得:,所以,解得:.故选:B【点睛】本题主要考查了正弦定理,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.12、【解析】
分别求出{}、{}的通项公式,再统一形式即可得解。【详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【点睛】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。13、1023【解析】
根据等比数列的定义以及前项和公式即可.【详解】因为所以,所以为首先为1公比为2的等比数列,所以【点睛】本题主要考查了等比数列的前项和:属于基础题.14、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.15、【解析】由题意,得,,则.16、【解析】
根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)存在,或.【解析】
(1)由条件可得,即,再由等比数列的定义即可得证;
(2)由等比数列的通项公式求得,,再由数列的单调性的判断,可得最小值,解不等式即可得到所求最小值;
(3)假设存在首项、第项、第项(),使得这三项依次构成等差数列,由等差数列的中项的性质和恒等式的性质,可得,的方程,解方程可得所求值.【详解】解:(1)证明:由,
得,即,
所以数列是首项为2,公比为2的等比数列;
(2)由(1)可得,,则
故,
设,
则,
所以单调递增,
则,于是,即,
故整数的最小值为;
(3)由上面得,,
设,
要使得成等差数列,即,
即,
得,
,
,
故为偶数,为奇数,
或.【点睛】本题考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的解法,注意运用函数的单调性求得最值,考查存在性问题的解法,注意运用恒等式的性质,是一道难度较大的题目.18、(1),;(2)乙班的整体水平较高【解析】
(1)由茎叶图数据以及平均数,中位数的定义求解即可;(2)分别计算出甲乙两班的方差,得出,所以乙班的整体水平较高.【详解】(1)由茎叶图知甲班成绩数据依次为9,12,,20,26所以中位数为,得;乙班成绩数据的平均数,得.(2)乙班整体水平较高.理由:由题意及(1)得因为,所以乙班的整体水平较高.【点睛】本题主要考查了利用茎叶图计算平均数,中位数以及方差的应用,属于中档题.19、(1);(2)(i)(ii)面积最大值为,直线的方程为.【解析】
(1)根据题意列出方程求解即可(2)联立直线与圆的方程,得出P、Q、H三点坐标,表示出QH直线方程,采用点到直线距离公式求解;利用圆的几何关系,表示出三角形的底和高,再结合函数最值问题进行求解【详解】(1)由及两点距离公式,有,化简整理得,.所以曲线C的方程为;(2)(i)设直线l的方程为;将直线l的方程与圆C的方程联立,消去y,得(,解得因此,,,所以直线QH的方程为.到直线QH的距离,当时.,所以,(ii)过O作于D,则D为QR中点,且由(i)知,,,又由,故的面积,由,有,所以,当且仅当时,等号成立,且此时由(i)有,即.综上,的面积最大值为的面积最大值为,且当面积最大时直线的方程为.【点睛】直线与圆的综合类题型常采用点到直线距离公式、圆内构造的直角三角形,将代数问题与几何问题进行有效结合,可大大降低解题难度.20、(1)见解析;(2)【解析】
(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求四棱锥的体积.【详解】(1)由已知,得,,由于,故,从而平面,又平面,所以平面平面.(2)设,则,所以,从而,也为等腰直角三角形,为正三角形,于是四棱锥的侧面积,解得,在平面内作,垂足为,由(1)知,平面,故,可得平面且,故四棱锥的体积.【点睛】本题考查了面面垂直的判定与证明,以及四棱锥的体积的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,着重考查了推理与论证能力,属于基础题.21、(1);(2)【解析】
(1)利用列举法,列举出偏理方向和偏文方向的所有情况,即可求得小明选择偏理方向且选择了生物学科的概率.(2)利用列举法,列举出两个人选择偏理方向且带有生物学科的所有可能,即可求得两人选课相同的概率.【详解】(1)由题意知,选六科参加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六种选择;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六种选择.由以上可知共有12种选课模式.小明选择偏理方向又选择生物的概率为.(2)小明选择偏理且有生物学科的可能有:(物,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自然人投资协议书(2篇)
- 课件励志插图教学课件
- 中学语文教学反思21篇
- 南京工业大学浦江学院《数媒工作坊-3》2022-2023学年第一学期期末试卷
- 亳州恒大城 9-17#主体及配套工程运动中心施工组织设计
- 反应热说课稿
- 地球的运动说课稿
- 南京工业大学浦江学院《客户关系管理》2023-2024学年第一学期期末试卷
- 南京工业大学浦江学院《工程数学》2021-2022学年第一学期期末试卷
- 《桃花源记》说课稿8
- 拱桥悬链线计算表
- 一对一学生课时签到表
- 木材材积速算表
- 如何培养学生良好的双姿习惯(精)
- 计算机及外部设备装配调试员国家职业技能标准(2019年版)
- GB18613-2012中小型异步三相电动机能效限定值及能效等级
- 《临床决策分析》课件.ppt
- 家风家训PPT课件
- 泪道冲洗PPT学习教案
- 浅谈校园影视在学校教育中的作用
- 无公害农产品查询
评论
0/150
提交评论