




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A. B. C. D.2.若函数在处取最小值,则等于()A.3 B. C. D.43.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.设,,,则()A. B. C. D.5.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,6.已知,满足,则()A. B. C. D.7.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”8.已知,则向量在方向上的投影为()A. B. C. D.9.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点10.若,则在中,正数的个数是()A.16 B.72 C.86 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线,圆O:上到直线的距离等于2的点有________个。12.对于下列数排成的数阵:它的第10行所有数的和为________13.已知等差数列的前三项为,则此数列的通项公式为______14.在中,角,,所对的边分别为,,,已知,,,则______.15.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.16.设扇形的半径长为,面积为,则扇形的圆心角的弧度数是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,D是边BC上的点,满足,,.(1)求;(2)若,求BD的长.18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.19.如图,是以向量为边的平行四边形,又,试用表示.20.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。21.已知三棱锥中,是边长为的正三角形,;(1)证明:平面平面;(2)设为棱的中点,求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【点睛】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.2、A【解析】
将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.3、B【解析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移4、B【解析】
根据与特殊点的比较可得因为,,,从而得到,得出答案.【详解】解:因为,,,所以.故选:B【点睛】本题主要考查指数函数和对数函数的单调性与特殊点的问题,要熟记一些特殊点,如,,.5、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.6、A【解析】
根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.7、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.8、B【解析】
根据向量夹角公式求得夹角的余弦值;根据所求投影为求得结果.【详解】由题意得:向量在方向上的投影为:本题正确选项:【点睛】本题考查向量在方向上的投影的求解问题,关键是能够利用向量数量积求得向量夹角的余弦值.9、C【解析】
根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.10、C【解析】
令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、3;【解析】
根据圆心到直线的距离和半径之间的长度关系,可通过图形确定所求点的个数.【详解】由圆的方程可知,圆心坐标为,半径圆心到直线的距离:如上图所示,此时,则到直线距离为的点有:,共个本题正确结果:【点睛】本题考查根据圆与直线的位置关系求解圆上点到直线距离为定值的点的个数,关键是能够根据圆心到直线的距离确定直线的大致位置,从而根据半径长度确定点的个数.12、【解析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.13、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.14、30°【解析】
直接利用正弦定理得到或,再利用大角对大边排除一个答案.【详解】即或,故,故故答案为【点睛】本题考查了正弦定理,没有利用大角对大边排除一个答案是容易发生的错误.15、【解析】
设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【点睛】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.16、2【解析】试题分析:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2考点:扇形面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由中,D是边BC上的点,根据面积关系求得,再结合正弦定理,即可求解.(2)由,化简得到,再结合,解得,进而利用勾股定理求得的长.【详解】(1)由题意,在中,D是边BC上的点,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【点睛】本题主要考查了三角形的正弦定理和三角形的面积公式的应用,其中解答中熟记解三角形的正弦定理,以及熟练应用三角的面积关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.18、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19、,,【解析】试题分析:利用向量的加减法的几何意义得,再结合已知及图形得最后求出.试题解析:解:考点:向量的加减法的几何意义20、(1)(2)使的面积等于4的点有2个【解析】
(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面积等于4的点有2个。【点睛】本题考查圆的方程,直线与圆的位置关系,圆的第二定义,考查运算能力,分析问题解决问题的能力,属于难题.21、(1)见解析(2)【解析】
(1)由题意结合正弦定理可得,据此可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年压疮护理新进展
- 客户开发工作总结案例
- 电梯安全培训
- 儿童财商教育课件
- 内科护理10分钟小讲课
- 仓储物流中心厂房出租与仓储服务外包协议
- 心梗老人的护理
- 知识产权采购合同范本:电子元器件行业
- 创新型企业厂房物业管理及创新解决方案合同范本
- 物业服务企业人力资源配置合同
- 2025年离婚协议书版本
- 店铺转让合同协议书模板
- 2025辽宁中考:历史必考知识点
- 农村电商赋能乡村振兴培训课程大纲
- 2025届重庆康德三诊英语+答案
- 耳石症教学课件
- 玻璃吊装施工专项施工方案
- 探寻河北省竞技体育可持续发展的社会资源密码:现状、挑战与破局之策
- 焊接安全知识考核试题及答案
- 2025燃气电厂智能巡检系统技术方案
- 高中学校托管协议书范本
评论
0/150
提交评论