山东省夏津一中2023年数学高一下期末达标测试试题含解析_第1页
山东省夏津一中2023年数学高一下期末达标测试试题含解析_第2页
山东省夏津一中2023年数学高一下期末达标测试试题含解析_第3页
山东省夏津一中2023年数学高一下期末达标测试试题含解析_第4页
山东省夏津一中2023年数学高一下期末达标测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项公式,其前项和为,则等于()A. B. C. D.2.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形3.等比数列{an}中,Tn表示前n项的积,若T5=1,则()A.a1=1 B.a3=1 C.a4=1 D.a5=14.直线被圆截得的弦长为()A.4 B. C. D.5.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.6.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20187.棱长为2的正四面体的表面积是()A. B.4 C. D.168.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=9.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.10.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若对任意都有()成立,则的最小值为__________.12.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.13.过点,且与直线垂直的直线方程为.14.已知数列的前项和满足,则______.15.已知函数,它的值域是__________.16.设满足不等式组,则的最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最大值是1,其图像经过点(1)求的解析式;(2)已知且求的值。18.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.19.已知函数,若,且,,求满足条件的,.20.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.21.将函数的图像向右平移1个单位,得到函数的图像.(1)求的单调递增区间;(3)设为坐标原点,直线与函数的图像自左至右相交于点,,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

依据为周期函数,得到,并项求和,即可求出的值。【详解】因为为周期函数,周期为4,所以,,故选B。【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。2、A【解析】

在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.3、B【解析】分析:由题意知,由此可知,所以一定有.详解

,.

故选B.点睛:本题考查数列的性质和应用,解题时要认真审题,仔细解答.4、B【解析】

先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.5、C【解析】

根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.6、A【解析】

通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,7、C【解析】

根据题意求出一个面的面积,然后乘以4即可得到正四面体的表面积.【详解】每个面的面积为,∴正四面体的表面积为.【点睛】本题考查正四面体的表面积,正四面体四个面均为正三角形.8、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.9、A【解析】由题意得,所以,选A.10、B【解析】

先由角的终边过点,求出,再由二倍角公式,即可得出结果.【详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据和的取值特点,判断出两个值都是最值,然后根据图象去确定最小值.【详解】因为对任意成立,所以取最小值,取最大值;取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且,故.【点睛】任何一个函数,若有对任何定义域成立,此时必有:,.12、10.【解析】

由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.13、【解析】

直线垂直表示斜率乘积为-1,所以可得新直线斜率,代入点即可.【详解】直线的斜率等于-1,所以与之垂直直线斜率,再通过点斜式直线方程:,即.【点睛】此题考查直线垂直,直线垂直表示两直线斜率之积为-1,属于简单题目.14、5【解析】

利用求得,进而求得的值.【详解】当时,,当时,,当时上式也满足,故的通项公式为,故.【点睛】本小题主要考查已知求,考查运算求解能力,属于基础题.15、【解析】

由反余弦函数的值域可求出函数的值域.【详解】,,因此,函数的值域为.故答案为:.【点睛】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.16、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】本题(1)属于基础问题,根据题意首先可求得A,再将点M代入即可求得解析式;对于(2)可先将函数f(x)的解析式化简,再带入,利用两角差的余弦公式可求解;(1)依题意知A=1,又图像经过点M∴,再由得即因此;(2),且,;18、(1)(2)3【解析】

(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【点睛】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.19、,【解析】

利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.20、(1);(2).【解析】

(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本题考查正弦定理和余弦定理,考查同角间的三角函数关系,考查基本不等式求最值.本题主要是考查的公式较多,掌握所有公式才能正确解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论