版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.2.已知,∥则()A.6 B. C.-6 D.3.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.4.矩形中,,若在该矩形内随机投一点,那么使得的面积不大于3的概率是()A. B. C. D.5.过点的圆的切线方程是()A. B.或C.或 D.或6.已知为等差数列,,,则等于().A. B. C. D.7.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形8.下图所示的几何体是由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为质点的圆锥面得到,现用一个垂直于底面的平面去截该几何体、则截面图形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)9.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.710.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则______________.12.______.13.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.14.在数列{}中,,则____.15.的值为__________.16.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的值(2)若,,且,,求的值18.已知函数,且.(1)求常数及的最大值;(2)当时,求的单调递增区间.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定3998是否是数列中的项?20.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.21.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.2、A【解析】
根据向量平行(共线),它们的坐标满足的关系式,求出的值.【详解】,且,,解得,故选A.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.3、B【解析】
作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.4、C【解析】
先求出的点的轨迹(一条直线),然后由面积公式可知时点所在区域,计算其面积,利用几何概型概率公式计算概率.【详解】设到的距离为,,则,如图,设,则点在矩形内,,,∴所求概率为.故选C.【点睛】本题考查几何概型概率.解题关键是确定符合条件点所在区域及其面积.5、D【解析】
先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【点睛】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.6、B【解析】
利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出.【详解】解:为等差数列,,,,,,,,,.故选:【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7、C【解析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.8、D【解析】
根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案.【详解】根据题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时(1)符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时(4)符合条件;故截面图形可能是(1)(4);故选:D.【点睛】本题考查的知识点是旋转体,圆锥曲线的定义,关键是掌握圆柱与圆锥的几何特征.9、B【解析】
设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.10、C【解析】
由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【点睛】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.12、【解析】
,,故答案为.考点:三角函数诱导公式、切割化弦思想.13、262【解析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.14、1【解析】
直接利用等比数列的通项公式得答案.【详解】解:在等比数列中,由,公比,得.故答案为:1.【点睛】本题考查等比数列的通项公式,是基础题.15、【解析】
由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.16、.【解析】
利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【点睛】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公式及转化思想,还考查了两角差的正弦公式及同角三角函数基本关系,考查计算能力,属于中档题.18、(1),(2)递增区间为.【解析】
(1)由二倍角公式降幂,再由求出,然后由两角和的余弦公式化函数为一个角的一个三角函数形式,结合余弦函数单调性可得最大值;(2)由(1)结合余弦函数性质可得增区间.【详解】(1),由得,,即.∴,当时,即时,.(2)由,得,又,所以,所以递增区间为.【点睛】本题考查二倍角公式,考查两角和的余弦公式,考查余弦函数的性质.三角函数问题一般都要由三角恒等变换化为一个角的一个三角函数形式,然后利用正弦函数或余弦函数性质求解.19、(1)(2)第1000项【解析】
(1)由题意有,解方程组即得数列的通项公式;(2)假设3998是数列中的项,有,得,即可判断得解.【详解】解:(1)设数列的公差为,由题意有,解得,则数列的通项公式为.(2)假设3998是数列中的项,有,得,故3998是数列中的第1000项.【点睛】本题主要考查等差数列基本量的计算,考查某一项是否是等差数列中的项的判定,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)或;(2).【解析】试题分析:(1)设直线方程点斜式,再根据圆心到直线距离等于半径求斜率;最后验证斜率不存在情况是否满足题意(2)先求点的轨迹:为圆,再根据点到圆上点距离关系确定最值试题解析:(1)当过点直线的斜率不存在时,其方程为,满足条件.当切线的斜率存在时,设:,即,圆心到切线的距离等于半径3,,解得.切线方程为,即故所求直线的方程为或.(2)由题意可得,点的轨迹是以为直径的圆,记为圆.则圆的方程为.从而,所以线段长度的最大值为,最小值为,所以线段长度的取值范围为.21、(1)或;(2).【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024校长及副校长任期服务合同签订会议精彩瞬间3篇
- 2024年曝光机玻璃项目可行性研究报告
- 2024年度建筑工程质量监管正规合同3篇
- 2024年无极调速振动按摩器项目可行性研究报告
- 2025年-河北省安全员A证考试题库及答案
- 2025年度虚拟货币交易平台合作协议3篇
- 2024年项目启动资金垫付合同
- 2024年特别版:生物医药研发与临床试验合同
- 2025版腻子产品市场准入与资质审核合同3篇
- 2024年货运物流信息化管理服务合同范本3篇
- 2024年中国电建集团新能源开发有限责任公司招聘笔试参考题库含答案解析
- (高清版)DZT 0203-2020 矿产地质勘查规范 稀有金属类
- 《中小学消防安全教育:森林防火》课件模板
- 手术供应室培训课件总结
- 亚马逊卫浴行业分析
- 发运工作总结
- 地方蚕丝被质量整改方案
- 2024年北京社会管理职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 脑出血病人的护理
- 神经外科术后病人健康宣教
- 智慧农业行业政策分析
评论
0/150
提交评论