版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A.0° B.60° C.45° D.30°3.设为数列的前项和,,则的值为()A. B. C. D.不确定4.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角
④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.45.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度6.直线的倾斜角为()A. B. C. D.7.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值8.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个9.在中,分别是角的对边,,则角为()A. B. C. D.或10.掷一枚均匀的硬币,如果连续抛掷2020次,那么抛掷第2019次时出现正面向上的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______12.函数可由y=sin2x向左平移___________个单位得到.13.明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头几盏灯?”则尖头共有__________盏灯.14.已知,则______.15.若,则__________.(结果用反三角函数表示)16.数列满足,(且),则数列的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?18.在中,角对应的边分别是,且.(1)求角;(2)若,求的取值范围.19.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;20.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?21.如图,为圆的直径,点,在圆上,,矩形和圆所在的平面互相垂直,已知,.(1)求证:平面平面;(2)当时,求多面体的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.2、A【解析】
证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为A【点睛】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.3、C【解析】
令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.4、B【解析】
把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.5、D【解析】
先将化为,根据函数图像的平移原则,即可得出结果.【详解】因为,所以只需将的图象向右平移个单位.【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.6、C【解析】
求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.7、C【解析】
根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.8、B【解析】
对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.9、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】
根据概率的性质直接得到答案.【详解】根据概率的性质知:每次正面向上的概率为.故选:.【点睛】本题考查了概率的性质,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.12、【解析】
将转化为,再利用平移公式得到答案.【详解】向左平移故答案为【点睛】本题考查三角函数图像的平移,将正弦函数化为余弦函数是解题的关键,也可以将余弦函数化为正弦函数求解.13、1【解析】
依题意,这是一个等比数列,公比为2,前7项和为181,由此能求出结果.【详解】依题意,这是一个等比数列,公比为2,前7项和为181,∴181,解得a1=1.故答案为:1.【点睛】本题考查等比数列的首项的求法,考查等比数列的前n项和公式,是基础题.14、【解析】
利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.15、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.16、【解析】
利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】
(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.18、(1);(2).【解析】
(1)依照条件形式,使用正弦定理化角为边,再用余弦定理求出,从而得出角的值;(2)先利用余弦定理找出的关系,再利用基本不等式放缩,求出的取值范围.【详解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,当且仅当时,等号成立,又,所以.【点睛】本题主要考查利用正余弦定理解三角形,以及利用基本不等式求等式条件下的取值范围问题,第二问也可以采用正弦定理化边为角,利用“同一法”求出的取值范围.19、(1);(2).【解析】
(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合公式.综上,数列的通项公式为.(2)因为,所以()由得,两式作差得,,即,故.【点睛】本题主要考查求数列通项的方法——公式法和构造法的应用,以及数列的求和方法——分组求和法和错位相减法的应用.20、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】
(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业合作利润分成协议
- 信息网络经销商合同
- 商铺转让合同协议书范本
- 高效员工劳动合同模板
- 旅行社转让协议书
- 统编版四年级上册语文9 古诗三首 《暮江吟》 公开课一等奖创新教学设计
- 标准离婚协议书样式示例
- 房屋动拆迁协议书编写指南
- 建筑工程公司项目合作风险评估
- 个人民房买卖合同样本
- 康派家具公司财务管理制度
- 赣州市中小学三年级上册计算机教室上机记录表
- 小学语文人教三年级上册第四单元《一边读一边猜》群文阅读
- 储罐安全操作规程
- 任务七食品中脂肪含量测定
- SpaceClaim.中文教程完整版
- 新生儿足底血采集技术评分标准
- 面向品牌供应链的绿色物流方案最佳实践
- 《IT人员职业规划》
- 2022年江西省书记员招聘笔试试题及答案解析
- 宅基地行政复议申请书范本,行政复议申请书格式
评论
0/150
提交评论