版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列满足“对任意正整数,都有”的充要条件是()A.是等差数列 B.与都是等差数列C.是等差数列 D.与都是等差数列且公差相等2.已知,则的值等于()A. B. C. D.3.设,则()A. B. C. D.4.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.05.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称6.设,,则下列不等式成立的是()A. B. C. D.7.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]8.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.329.已知函数f:R+→R+满足:对任意三个正数x,y,z,均有f().设a,b,c是互不相等的三个正数,则下列结论正确的是()A.若a,b,c是等差数列,则f(a),f(b),f(c)一定是等差数列B.若a,b,c是等差数列,则f(),f(),f()一定是等差数列C.若a,b,c是等比数列,则f(a),f(b),f(c)一定是等比数列D.若a,b,c是等比数列,则f(),f(),f()一定是等比数列10.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若与的夹角是锐角,则实数的取值范围为______.12.在空间直角坐标系中,点关于原点的对称点的坐标为______.13.若首项为,公比为()的等比数列满足,则的取值范围是________.14.67是等差数列-5,1,7,13,……中第项,则___________________.15.在中,,且,则.16.过点且与直线l:垂直的直线方程为______.(请用一般式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x,y的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差,其中为的平均数)18.在已知数列中,,.(1)若数列中,,求证:数列是等比数列;(2)设数列、的前项和分别为、,是否存在实数,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.19.如图,四面体中,,,为的中点.(1)证明:;(2)已知是边长为2正三角形.(Ⅰ)若为棱的中点,求的大小;(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.20.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.21.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将变形为和,根据等差数列的定义即可得出与都是等差数列且公差相等,反过来,利用等差数列的定义得到,变形即可得出,从而得到“”的充要条件是“与都是等差数列且公差相等”.【详解】由得:即数列与均为等差数列且公差相等,故“”是“与都是等差数列且公差相等”的充分条件反之,与都是等差数列且公差相等必有成立变形得:故“与都是等差数列且公差相等”是“”的必要条件综上,“”的充要条件是“与都是等差数列且公差相等”故选:D.【点睛】本题主要考查了等差数列的判断,考查了充分必要条件的判断,属于中等题.2、B【解析】.3、D【解析】
由得,再计算即可.【详解】,,所以故选D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题.4、C【解析】
由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;
②,则平行,相交,异面都有可能,故不正确;
③,则与α平行,相交都有可能,故不正确.
故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.5、B【解析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.6、D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1(-2)>(-1)(-5),不成立;取选项C,,不成立,故选D考点:不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题7、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.8、B【解析】
由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.9、B【解析】
令,,,若是等差数列,计算得,进而可得结论.【详解】由题意,,令,,,若是等差数列,则所以,即,故,,成等差数列.若是等比数列,,,与,,既不能成等差数列又不等成等比数列.故选:B.【点睛】本题考查抽象函数的解析式,等差数列的等差中项的性质,属于中档题.10、B【解析】
首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx【详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fx【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出与的坐标,再根据与夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数的取值范围,.【详解】向量,,,,若与的夹角是锐角,则与不共线,且它们乘积为正值,即,且,求得,且.【点睛】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.12、【解析】
利用空间直角坐标系中,关于原点对称的点的坐标特征解答即可.【详解】在空间直角坐标系中,关于原点对称的点的坐标对应互为相反数,所以点关于原点的对称点的坐标为.故答案为:【点睛】本题主要考查空间直角坐标系中对称点的特点,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】
由题意可得且,即且,,化简可得由不等式的性质可得的取值范围.【详解】解:,故有且,化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质,属于中档题.14、13【解析】
根据数列写出等差数列通项公式,再令算出即可.【详解】由题意,首项为-5,公差为,则等差数列通项公式,令,则故答案为:13.【点睛】等差数列首项为公差为,则通项公式15、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或−3(舍去).考点:1、正弦定理及余弦定理;2、三角形内角和定理及两角和的余弦公式.16、【解析】
与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)乙班的整体水平较高【解析】
(1)由茎叶图数据以及平均数,中位数的定义求解即可;(2)分别计算出甲乙两班的方差,得出,所以乙班的整体水平较高.【详解】(1)由茎叶图知甲班成绩数据依次为9,12,,20,26所以中位数为,得;乙班成绩数据的平均数,得.(2)乙班整体水平较高.理由:由题意及(1)得因为,所以乙班的整体水平较高.【点睛】本题主要考查了利用茎叶图计算平均数,中位数以及方差的应用,属于中档题.18、(1)见解析;(2)存在,.【解析】
(1)利用等比数列的定义结合数列的递推公式证明出为非零常数,即可证明出数列为等比数列,并可求出数列的通项公式;(2)求出数列的通项公式,利用分组求和法与等比数列的求和公式分别求出数列、,设,列出关于、、的方程组,解出即可.【详解】(1)在数列中,,,则,,且,数列是以为首项,为公比的等比数列,;(2),整理得,,,,所以,,若数列为等差数列,可设,则,即,则,解得,因此,存在实数,使得数列为等差数列.【点睛】本题考查等差数列的证明、数列求和以及等差数列的存在性问题,熟悉等差数列的定义和通项公式的结构是解题的关键,考查推理能力与运算求解能力,属于中等题.19、(1)证明见解析;(2)(Ⅰ);(Ⅱ)【解析】
(1)取中点,连接,通过证明,证得平面,由此证得.(2)(I)通过证明,证得平面,由此证得,利用“直斜边的中线等于斜边的一半”这个定理及其逆定理,证得.(II)利用求得四面体的体积的表达式,结合基本不等式求得四面体的体积的最大值.【详解】(1)取的中点,所以,所以.又因为,所以,又,所以面,所以.(2)(Ⅰ)由题意得,在正三角形中,,又因为,且,所以面,所以.∵为棱的中点,∴,在中,为的中点,.∴(Ⅱ),四面体的体积,又因为,即,所以等号当且仅当时成立,此时.故所求的四面体的体积的最大值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查直角三角形的判定,考查三棱锥体积的最大值的求法,考查基本不等式的运用,考查空间想象能力和逻辑推理能力,属于中档题.20、(1);(2).【解析】
(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ui设计课件教学课件
- 鼻内窥镜手术病人的护理
- 未来工作规划及发展
- 年度人力资源工作规划
- 新生儿气道的管理
- 九下英语14单元知识课件
- 钻石首饰精美设计
- 直复营销世界风推广-调研总结和案例讨论V06
- 幼儿园班务总结小班
- 浙江省杭州市北斗联盟2024-2025学年高二上学期期中联考英语试题 含解析
- 部编版八年级语文下册综合实践活动作业设计五 学写游记
- 10kV供配电系统电气设备改造 投标方案(技术方案)
- 《游泳技能训练》课程标准
- 粮食储备处工作总结
- 大学生就业能力展示 (模板)
- 财务管理与天气变化
- 净菜加工技术通则
- 辽宁经济职业技术学院单招《职测》参考试题库(含答案)
- 徐州市2023-2024学年九年级上学期期末道德与法治试卷(含答案解析)
- 城市轨道交通绿色环保技术
- 四川省凉山州西昌市2023-2024学年高一上学期期末考试物理试题
评论
0/150
提交评论