余角和补角的教学设计_第1页
余角和补角的教学设计_第2页
余角和补角的教学设计_第3页
余角和补角的教学设计_第4页
余角和补角的教学设计_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

余角和补角的教学设计(韩有)指导思想与理论依据:本节课以新课程理念为根本指导思想,本着“人人学习有用的数学”的观点,重视培养学生探索、发现知识和应用、解决问题的能力。课堂模式由单一的知识型向复合的应用、实践型转变,采用“引导——发现”的教学模式。这种模式的基本程序是“问题——猜想——验证——应用”。让学生体会到数学是来源于实际、应用于实际的工具。这种应用既体现在生活中又体现在整个知识网络中。教学手段由教师讲授的单一渠道拓展为多途径多手段的复合渠道,让学生的各个感知器官积极、协调的运转,达到事倍功半的效果。该操作的理论依据是布鲁纳的“发现学习”理论和杜威的“活动学习”理论。布鲁纳认为发现不仅限于寻求尚未知晓的事物,它包括用自己的头脑亲自获得知识的一切形式。学生在数学学习的过程中只有通过亲身的体验,才能掌握方法;他们在学习过程中应该是积极的探索者,教师要精心设置一个个问题链,以活动贯穿,创造一个适合学生探索的环境,通过不同的途径引导其自主探索。教学背景分析:余角和补角这节课知识点少,内容简单,往往被大多数教师视为没什么可讲的、枯燥的章节。所以在处理上大都是交待完概念,反复熟练便达到目的。但我们如果细心观察、注意联系总结会发现,互余和互补在生活中并不少见,而且这部分知识在今后解决综合性问题时也经常充当纽带和桥梁。所以在设计时充分考虑了实践性和操作性,重视知识纵深铺垫。所教学生数学基础比较扎实,但发散性思维、解决问题的灵活性和语言表述能力上有待于进一步训练。这与以往的数学课重在知识的“灌输”,重在知识系统的完整性和系统性,而忽视了学生创造性、探索精神的培养,造成了学生高分低能的现象不无关系。从这个角度上讲“人人学习有用的数学”的观点更适合培养创造性人才的需要。所以本节课把基础的落实设计得精准、有代表性,而在其它活动的设置上尽量采取开放型的提问方式,引导学生在多角度、灵活解决问题的同时,善于总结应用。为了多给学生交流的机会锻炼语言表述能力,和培养合作学习的意识和能力,有些环节设置成以四人小组为单位的学习单元,共同活动、讨论解决;对于学生们的分析结论鼓励其大胆陈述,好的成果利用视频展示给大家分享;对于抽象难懂的部分适当的运用多媒体手段使之表象化,生动化。教学任务分析教学目标预定知识技能1、理解互为余角、互为补角的概念;2、在探索中理解余角、补角的性质,并能够运用其解决特定的数学问题.过程方法1、尝试从实际情境中处理信息,在观察、猜想、说明过程中体会数学思考过程的层次性和表述的严谨性;2、通过两角度数的特殊值确定两角的关系;3、几何中数与形的特殊对应关系.尝试从实际情境中处理信息、形成数学思情感态度在共同活动中培养数学兴趣和合作学习能力,在探索过程中形成实事求是的态度和勇于探索的精神.重点余角、补角的概念和性质的应用.难点估计特殊图形中的识别与性质应用.课前准备教具学具所需预备知识课件、三角板一副三角板、角度的计算、等式的性质等.教学流程大致安排师生互动流程图活动内容和目的【活动1】理解互余、互补的由来欣赏录像——意大利风景,引出研究课题,抽象出互为余角、互为补角的概念.【活动2】练习加深对互余和互补是两个角的数量关系的理解,能识别、计算和简单应用.【活动3】研究余角、补角的性质通过作图、猜想、论证等数学活动探索、掌握余角、补角的性质.【活动4】利用所学知识解决特定数学任务互余、互补及其性质在特殊位置关系图形中的应用【活动5】三角板拼接用三角板构造角的数量关系图形,体会数形的辩证关系.【活动6】小结简要回顾所学知识.具体教学过程设计:问题情境与师生活动设计意图【活动1】欣赏录像——意大利风景、建筑,针对比萨斜塔设置问题情境.某位游客设计的测量斜塔倾角的方案:将斜塔看成一条线段OA,在正午太阳直射地面时标记塔顶的影子B,画出直线OB,想办法测出了∠AOB=85°(1)斜塔OA倾斜了多少度?(2)斜塔OA与OB所成的另外一个角是多少度?总结互余和互补的概念2006年的冬季奥运会将在都灵举行,意大利备受关注。比萨斜塔又是学生熟悉的建筑,而且有许多科学渊源,容易激发学生的学习兴趣;问题情境与师生活动设计意图【活动2】1、下列各角哪些互为余角,哪些互为补角?2、30°20′的余角和补角分别是多少?30°20′的余角=90°-30°20′=59°40′.30°20′的补角=180°-30°20′=149°40′.若一个角为x度,则它的余角为(90-x)度,它的补角为(180-x)度3、一个角的补角比它的2倍多30°,这个角是多少度?4、一个角的补角是它的余角的3倍,求这个角.解:设这个角为x度,则它的余角为(90-x)度,它的补角为(180-x)度列方程:3(90-x)=180-xx=45°答:这个角为45°.此组题就概念进行简单训练.会识别互余与互补关系.强调互余和互补是一对角的数量关系,与位置无关.会求一个角的余角和补角.应用方程思想解决角及其关系角之间的问题.【活动3】问题一:已知锐角∠AOB,试着画出∠AOB的余角分析:我们可用的作图工具有圆规、直尺、三角板、半圆仪,试着选取适当的工具,设计方案.方案一:可以先度量∠AOB,通过计算得到其余角的度数,再画满足条件的角.发现:这样画出的余角有无数个,但他们的度数相同.方案二:启发学生寻求便捷的途径:让三角板的直角顶点与角的顶点重合,一条直角边与角的一边重合,画出想求做的角.(在数量上满足两角互余的前提下有一条公共边)这是一个开放性的问题,培养发散性思维和解决问题的灵活性、便捷性;可以帮助学生理解互余的概念,在解决问题的过程中提升创造能力,并从中发现互余、互补的性质.问题情境与师生活动设计意图问题二:∠1=∠2,∠3与∠1互余,∠4与∠2互余,猜一猜∠3与∠4是什么关系?根据概念∠3=90°-∠1∠4=90°-∠2而∠1=∠2,则由等式的性质有90°-∠1=90°-∠2,即∠3=∠4结论:同角(等角)的余角相等.同样:同角(等角)的补角相等.【活动4】在下列图形中找特殊的数量关系:练习互余、互补及其性质在特殊位置关系图形中的应用【活动5】上一个图形是由如下的三角板模型抽象而来的.一副三角板本身就蕴含着相等和互余,用一副三角板还能构造出其它一些图形,其中蕴含着相等、互余或者是互补的角,请大家动手尝试,构造设计一些这样的图形.例如:AOAOCB23图中∠1=∠2,甚至进而研究∠3与∠COB什么关系?引导学生讨论尝试多种解决方案:三角板问题是今后学习中,几何情境设置的常用素材.此活动能锻炼学生灵活解决问题的能力。引导学生利用三角板构造满足互余情况的特殊位置关系的图形,了解特殊位置关系与特殊数量关系的对应.问题情境与师生活动设计意图如直观说明:反向延长OB,找到∠3的等角,它与∠COB构成平角,因此∠3与∠COB互补.再如理论推导:引导学生在隐藏的图形中寻求度数的特殊值,从而确定关系.进而能够利用现有的工具构造这样的图形.这些图形是后继内容的基本形.【活动6】师生小结本结要点:互余、互补的概念;余角、补角的性质;几个探索出的规律;关注学生的感受.体会互余、互补是特殊的数量关系,它在特殊位置关系的图形中有着广泛的应用教学效果评价设计:为了综合考察学生的基本技能和能力水平,让不同层次的学生都有展示的机会,设计了一道多步骤评价方案:(1)一个角的补角是它的余角4倍,求这个角(2)画出这个角∠AOB(3)想办法画一个角,使它等于∠AOB(也是教学环节的延伸)结果预想:因为学生基础比较扎实,所以前两个问题属于最基本问题。第一问经过课堂教学的几个练习,每个学生都应该知道解决的方法,即便掌握的不牢固,也可通过复习重新理解、解决;第二问在第一问基础上用半圆仪和直尺就能画出;而第三问虽然不难,但做法上有灵活性,而且能体现出学生对本节知识的理解应用水平。大致学生的思路应该有度量法、尺规作图、同角的余角相等、同角的补角相等。而后两种思路的具体操作由于构造形式不唯一、作图工具不唯一又具有多样性。仅举几例的示意图:结果分析:第一题采用方程的思想来解决,在学生设未知数,表示余角和补角的过程中就能测评出学生对概念的理解,解题过程体现出对方程思想的领会运用程度;想到借助于同一个角的余角和补角的关系就更可贵;根据情况可分为了解、会用、灵活运用几等。而后两个问题通过学生作图方法的多少就能考察出学生是否有学以致用的意识,和应用的熟练灵活程度;根据情况可分为能画出、能多种方法画出和能把握实质灵活画出几等。通过学生的反馈我们就可以分析出课堂环节设置的是否合理,每一环节是否落实,哪里值得借鉴,哪里需要完善。评课材料“余角和补角”是一节探究性活动课,采用了“提出问题——猜想结论——验证结论——应用结论”这样一个基本模式,课堂设计流畅,学生充分思考、活动,课堂气氛活跃。(一)创设情境,引入概念。以往在教授这一课时,教师往往平铺直叙的引入余角、补角概念,而韩有老师通过比萨斜塔这一学生熟知的著名建筑引出概念,不但使学生能充分理解概念,并且可以充分引起学生的有意注意,一下子把学生吸引到课堂上来。(二)落实双基做课不仅是一种展示,更重要的是让学生掌握必要的知识。活动二的设计充分体现了这一点,并且在解题过程中渗透了方程思想的应用,既是对上一章知识的应用和巩固,也为今后的学习打下基础。(三)活动设计,训练学生灵活解题能力。 活动五的设计引导学生利用三角板构造满足互余情况的特殊位置关系的图形,了解特殊位置关系与特殊数量关系的对应,在活动中充分运用新学的知识,培养学生的创造性和探索精神,充分调动了学生积极思考。(四)评价方案设计合理,具有综合性为了综合考察学生的基本技能和能力水平,让不同层次的学生都有展示的机会,设计了一道多步骤评价方案,通过此问题既能检验学生上课的质量,同时也给学有余力的学生提供了一个提高的机会。整节课一气呵成,达到了提高学生素质及培养学习几何兴趣的目的,也使学生看到了数学来源于生活、应用于生活的实质。《余角和补角》说课稿1、说教材的地位和作用我今天说课的内容是浙教版七年级数学上册第七章第六节内容《余角和补角》,本节课是在认识直角、平角的基础上,通过数量关系和图形关系学习两角互余、互补的概念和性质以及利用用方程的思想来解决几何中涉及求某个角的度数的问题。《图形的初步知识》这一章节是学生进入平面几何大厦的“门槛”。《余角和补角》是《图形的初步知识》的重要组成部分,从线段的概念引出射线的概念进而引入角的概念,在认识了直角、平角,比较角的大小后,就引进了余角、补角的概念及性质;是实验几何逐渐向证明几何的过渡,为以后证明角的相等作铺垫,也是为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打基础。2、说教学目标2.1教学目标根据上述教学内容地位和作用以及初一学生现有认知水平确定,我制定如下教学目标:知识目标:在具体情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题。能力目标:经历、观察、操作,探究等过程,发展学生几何概念,培养学生推理能力和表达能力。情感目标:培养学生乐于探究、合作的习惯,体验探索成功,感受到成功的乐趣,进一步体会“数学就在我的身边”,增强学生用数学解决实际问题的意识。2.2教学重点和难点重点:余角和补角的概念和性质,教学时可运用文字语言、图形语言、符号语言三结合的训练方法强调概念的本质特征,突出教学重点。难点:关于余角和补角的性质的应用常常需要说理,或综合运用代数知识,特别是用代数的方法来计算角的度数,由于学生缺乏经验,是教学中的难点。可通过由浅入深、讨论比较、归纳小结等方法及变化训练突破上述难点。3、说教法3.1教法分析针对初一学生的年龄特点和心理特征,以及他们的知识水平,采用启发式、发现法教学等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛活泼,有新鲜感。3.2学法指导在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”。3.3教学手段采用多媒体辅助教学,增加课堂容量,提高教学效果。4.、说设计:一、导入设计由数字入手向学生提问:90°和180°在几何中表示哪两个角的度数?然后请学生画出这两个角。并与书上合作学习作比较得出课题。(让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励)(设计意图:因为直角和平角是学生熟悉的两个角,由已知引出未知符合学生的认知规律,再通过实践操作,寻找数量关系、图形变式揭示概念特征,渗透从特殊到一般的归纳方法。)二、余角和补角概念的教学教师用多媒体演示,通过上面的演示,让学生说出余角的概念,并能从图形和数字两方面说,能把文字语言转化为符号语言。(教师扳书)同样的方法得出补角的概念。(教师扳书)师生一起归纳:1、互余和互补是指两个角之间的关系;2、两个角是否互余或互补只跟这两个角的大小有关,与它们的位置无关。3、强化两个角互余或互补的数量关系,互余:互补:(设计意图:培养学生的观察、归纳能力及文字语言、符号语言的表述能力。)三、概念的应用为了巩固,理解概念,我设计了2个抢答题和一个例题(设计意图:通过以上练习,让学生进一步巩固余角与补角的概念,掌握概念的本质。让学生明白:①互余和互补是指两个角之间的关系。②互余和互补只跟这两个角的数量有关,与它们的位置无关。③互余或互补的两个角中,已知一个角的度数,可求出另一个角的度数。)例1的教学,为了分散难点,我在教例1前先设计了3个练习。再让学生独立思考用怎样的方法解答,最后教师进行启发,启发学生用方程的思想来求未知角,具体的解答过程教师严格板书示例,强调解题格式。目的是让学生对余角和补角的概念有更加深化的了解和应用,加深印象。(学生通过课内练习3及时巩固用方程思想来求某个角的度数问题。)四、探索性质1、把互余、互补的概念讲清楚了,互余、互补的性质就容易了。因此,我把探索性质的过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论