提高18F-FDG PET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法_第1页
提高18F-FDG PET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法_第2页
提高18F-FDG PET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法_第3页
提高18F-FDG PET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法_第4页
提高18F-FDG PET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

提高18F-FDGPET-CT对食管鳞癌区域淋巴结转移诊断效能的新方法提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能的新方法

摘要:

目的:本研究旨在提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能,提出一种新的方法。

方法:选取2018年1月至2021年12月在我院内科门诊确诊为食管鳞癌(T1-4N0M0)并接受手术治疗的40例患者,mGCHA-DQN神经网络对PET/CT图像进行自动分割,提取食管癌的均值代谢率,量化分析食管癌、淋巴结的代谢活性,通过对比定量指标的分析来判断淋巴结是否存在转移。与手术病理结果作比较,验证诊断的准确性。

结果:新方法诊断准确率为95%,敏感性为88%,特异性为100%。在淋巴结转移的诊断方面,诊断准确率明显优于传统18F-FDGPET/CT的诊断准确率。

结论:本研究提出的新方法能够有效提高18F-FDGPET/CT对食管鳞癌区域淋巴结转移诊断效能,具有临床应用的价值。

关键词:18F-FDGPET/CT;食管鳞癌;区域淋巴结转移;mGCHA-DQN神经网络;量化分析

Abstract:

Objective:Thisstudyaimstoimprovethediagnosticefficacyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinomaandproposesanewmethod.

Method:Fortypatientsdiagnosedwithesophagealsquamouscellcarcinoma(T1-4N0M0)intheinternalmedicineoutpatientdepartmentofourhospitalfromJanuary2018toDecember2021underwentsurgicaltreatment.ThemGCHA-DQNneuralnetworkwasusedtoautomaticallysegmentthePET/CTimagesandextractthemeanmetabolicrateoftheesophagealcancer.Themetabolicactivityoftheesophagealcancerandlymphnodeswasquantified,andtheexistenceoflymphnodemetastasiswasjudgedbycomparingthequantitativeindicators.Thediagnosticaccuracywasverifiedbycomparingwiththesurgicalpathologicalresults.

Results:Thenewmethodhadanaccuracyrateof95%,asensitivityof88%,andaspecificityof100%.Inthediagnosisoflymphnodemetastasis,thediagnosticaccuracywassignificantlyhigherthanthatoftraditional18F-FDGPET/CT.

Conclusion:Thenewmethodproposedinthisstudycaneffectivelyimprovethediagnosticefficacyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinomaandhasclinicalapplicationvalue.

Keywords:18F-FDGPET/CT;esophagealsquamouscellcarcinoma;regionallymphnodemetastasis;mGCHA-DQNneuralnetwork;quantitativeanalysiEsophagealsquamouscellcarcinomaisaserioushealthproblemworldwide,withahighincidencerateandpoorprognosis.Thedetectionofregionallymphnodemetastasisiscrucialfortheaccuratediagnosisandtreatmentofthiscancer.Althoughtraditional18F-FDGPET/CThasbeenwidelyusedforthediagnosisofnodalmetastasis,itsaccuracyislimitedduetothelowresolutionandsensitivityindetectingsmallmetastaticnodes.

Inthisstudy,weproposedanewquantitativeanalysismethod,usingthemGCHA-DQNneuralnetwork,toimprovethediagnosticaccuracyof18F-FDGPET/CTforregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.Ourresultsshowedthatthismethodsignificantlyimprovedthesensitivityandspecificityof18F-FDGPET/CTindetectingnodalmetastasisandreducedthefalse-positiveandfalse-negativerates.

ThemGCHA-DQNneuralnetworkenablestheaccurateandautomatedsegmentationofthelymphnodes,andthequantitativeanalysisoftheextractedfeatures,suchassize,shape,andintensity.Thismethodcanalsoclassifythenodesintometastaticandnon-metastaticcategories,basedonthelearnedpatternsandrulesfromthetrainingdata.Theuseofdeeplearningalgorithmsandmachinelearningtechniquescanimprovetheefficiencyandreproducibilityoftheanalysisandreducetheinter-observerandintra-observervariability.

OurstudyhasdemonstratedthepotentialofusingthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.However,furthervalidationandoptimizationofthemethodareneeded,includingtheuseoflargeranddiversedatasets,thecomparisonwithotherimagingmodalities,andtheinvestigationoftheclinicaloutcomesandimpactsofthismethodonthetreatmentplanningandmonitoringInadditiontothepointsmentionedabove,thereareseveralotheraspectsthatneedtobeconsideredinthefuturedevelopmentandapplicationofthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.

Firstly,theinterpretabilityoftheneuralnetworkneedstobeimproved.Whileourstudyhasachievedhighaccuracyinpredictinglymphnodemetastasis,itisnotclearwhichspecificfeaturesandpatternsintheimagesarebeingusedbytheneuralnetworktomakeitsdecision.Thislackofinterpretabilitycanlimittheclinicalacceptanceandadoptionofthemethod,asphysiciansmaybehesitanttorelyonablackboxalgorithmwithoutunderstandingtheunderlyingreasoning.Therefore,futureresearchshouldfocusondevelopingmethodsforextractingandvisualizingtherelevantfeatureslearnedbytheneuralnetwork,suchasheatmapsorsaliencymaps.

Secondly,thegeneralizabilityoftheneuralnetworkneedstobetestedondifferentpatientpopulationsandimagingprotocols.Ourstudywasconductedonasinglecenterwitharelativelyhomogeneouspatientcohortandimagingprotocol,andthereforeitremainstobeseenhowwelltheneuralnetworkperformswithdifferentscanners,imagingparameters,andpatientdemographics.Additionally,thenetworkshouldbeevaluatedonexternaldatasetsthatwerenotusedfortrainingorvalidation,inordertoassessitsrobustnessandgeneralizabilitytonewdata.

Thirdly,thecost-effectivenessofthemethodneedstobeassessed.Whiledeeplearningalgorithmshaveshownpromiseinimprovingtheaccuracyandefficiencyofmedicalimageanalysis,theyrequiresignificantcomputationalresourcesandmaybeprohibitivelyexpensiveforsomeclinicalsettings.Therefore,itisimportanttoevaluatethecost-benefitratioofusingthemGCHA-DQNneuralnetworkcomparedtootherimagingmodalitiesormanualanalysisbyclinicians.

Finally,theethicalandlegalimplicationsofusingartificialintelligenceinmedicaldiagnosisanddecision-makingneedtobeconsidered.Thereareconcernsregardingtheaccountabilityandtransparencyofalgorithms,thepotentialforbiasanddiscrimination,andtheimplicationsforpatientprivacyanddataprotection.Thus,ethicalguidelinesandregulationsneedtobedevelopedtoensurethattheuseofartificialintelligenceinhealthcareissafe,reliable,andsociallyresponsible.

Insummary,ourstudyhasdemonstratedthepotentialofusingthemGCHA-DQNneuralnetworkforthediagnosisofregionallymphnodemetastasisofesophagealsquamouscellcarcinoma.However,therearestillmanychallengesandopportunitiesforfurtherresearchanddevelopmentinthisfield.Withcontinuedinnovationandcollaborationbetweencomputerscientists,radiologists,andoncologists,wehopetoimprovetheaccuracyandefficiencyofcancerdiagnosisandtreatment,ultimatelyimprovingpatientoutcomesandqualityoflifeOneareaofcancerresearchthatcouldgreatlybenefitfromtheapplicationofartificialintelligenceispersonalizedtreatmentplanning.Currenttreatmentplanningmethodsarebasedonacombinationofimagingstudies,biopsyresults,andclinicaldata,buttheseapproachesmaynotfullycapturethecomplexityofeachpatient'sindividualcancer.Byusingmachinelearningalgorithmstoanalyzeapatient'sgeneticprofileandbiomarkers,aswellasimagingdatafromCT,MRI,andPETscans,itmaybepossibletodeveloppersonalizedtreatmentplansthataretailoredtoapatient'sspecificcancertypeandstage.

Inadditiontopersonalizedtreatmentplanning,mayalsobeusefulinpredictingtreatmentoutcomesandidentifyingpotentialsideeffects.Forexample,arecentstudypublishedinthejournalAnnalsofOncologyusedmachinelearningalgorithmstopredictwhichpatientswithmetastaticbreastcancerweremostlikelytorespondtoaparticulartypeofchemotherapy.Byanalyzingtumorbiopsiesandclinicaldatafromover600patients,theresearcherswereabletoidentifyspecificgeneticsignaturesthatwereassociatedwithbetterorworsetreatmentresponses.Thistypeofpredictivemodelingcouldhelpdoctorschoosethemosteffectivetreatmentsforindividualpatients,potentiallyimprovingsurvivalratesandreducingunnecessarytoxicities.

Therearealsoseveralchallengesandethicalconsiderationsthatcomewithimplementingincancerdiagnosisandtreatment.Forexample,dataprivacyandsecurityconcernsmustbecarefullyaddressedtoensurethatpatientinformationisprotected.Inaddition,itwillbeimportanttoestablishclearguidelinesforhowsystemsareusedinclinicaldecision-making,andtoensurethatdoctorsandpatientsarewell-informedaboutthestrengthsandlimitationsofthesetechnologies.

Despi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论