2023年陕西省洛南中学高一数学第二学期期末考试试题含解析_第1页
2023年陕西省洛南中学高一数学第二学期期末考试试题含解析_第2页
2023年陕西省洛南中学高一数学第二学期期末考试试题含解析_第3页
2023年陕西省洛南中学高一数学第二学期期末考试试题含解析_第4页
2023年陕西省洛南中学高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象沿轴向左平移个单位,得到一个偶函数的图象,则的一个可能取值为()A. B. C. D.2.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.3.已知一直线经过两点,,且倾斜角为,则的值为()A.-6 B.-4 C.2 D.64.函数的简图是()A. B. C. D.5.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”6.已知函数在时取最大值,在是取最小值,则以下各式:①;②;③可能成立的个数是()A.0 B.1 C.2 D.37.设,则比多了()项A. B. C. D.8.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.49.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.1210.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列满足,则其公差为__________.12.如果是奇函数,则=.13.已知,则______.14.已知向量,,且,则的值为________.15.函数的初相是__________.16.已知,则____________________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.(1)求曲线C的轨迹方程(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.18.已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.19.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.20.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.21.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用函数y=Asin(ωx+)的图象变换可得函数平移后的解析式,利用其为偶函数即可求得答案.【详解】令y=f(x)=sin(2x+),则f(x)=sin[2(x)+]=sin(2x),∵f(x)为偶函数,∴=kπ,∴=kπ,k∈Z,∴当k=0时,.故的一个可能的值为.故选:B.【点睛】本题考查函数y=Asin(ωx+)的图象变换,考查三角函数的奇偶性的应用,属于中档题.2、B【解析】

根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【点睛】本题主要考查古典概型的概率求法。3、C【解析】

根据倾斜角为得到斜率,再根据两点斜率公式计算得到答案.【详解】一直线经过两点,,则直线的斜率为.直线的倾斜角为∴,即.故答案选C.【点睛】本题考查了直线的斜率,意在考查学生的计算能力.4、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.5、D【解析】

从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.6、A【解析】

由余弦函数性质得,(),解出后,计算,可知三个等式都不可能成立.【详解】由题意,(),解得,,,,三个都不可能成立,正确个数为1.故选A.【点睛】本题考查余弦函数的图象与性质,解题时要注意对中的整数要用不同的字母表示,否则可能出现遗漏,出现错误.7、C【解析】

可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.8、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.9、C【解析】

由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.10、D【解析】

若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【点睛】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据等差数列的性质得到,再根据即可得到公差的值.【详解】,解得.,所以.故答案为:【点睛】本题主要考查等差数列的性质,熟记公式为解题的关键,属于简单题.12、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题13、【解析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.14、【解析】

利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.15、【解析】

根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.16、【解析】

分子、分母同除以,将代入化简即可.【详解】因为,所以,故答案为.【点睛】本题主要考查同角三角函数之间的关系的应用,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】

(1)设点,运用两点的距离公式,化简整理可得所求轨迹方程;(2)由题意可知,直线的斜率存在,设直线方程为,求得到直线的距离,以及弦长公式,和三角形的面积公式,运用换元法和二次函数的最值可得所求.【详解】(1)设点,,即,,即,曲线的方程为.(2)由题意可知,直线的斜率存在,设直线方程为,由(1)可知,点是圆的圆心,点到直线的距离为,由得,即,又,所以,令,所以,,则,所以,当,即,此时,符合题意,即时取等号,所以面积的最大值为.【点睛】本题主要考查了轨迹方程的求法,直线和圆的位置关系,以及弦长公式和点到直线的距离公式的运用,考查推理与运算能力,试题综合性强,属于中档题.18、(1),(2)【解析】

(1)根据与的关系,利用临差法得到,知公差为3;再由代入递推关系求;(2)观察数列的通项公式,相邻两项的和有规律,故采用并项求和法,求其前项和.【详解】(1)对任意,有,①当时,有,解得或.当时,有.②①-②并整理得.而数列的各项均为正数,.当时,,此时成立;当时,,此时,不成立,舍去.,.(2).【点睛】已知与的递推关系,利用临差法求时,要注意对下标与分两种情况,即;数列求和时要先观察通项特点,再决定采用什么方法.19、(1);(2).【解析】

(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.21、(1);(2)存在点,直线方程为.【解析】

(1)设,由题意根据两点间的距离公式即可求解.(2)假设存在点满足题意,此时直线的方程为:.设,,根据题意可得,求出,再将直线与圆联立求出,根据向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论