版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.2.已知函数在一个周期内的图象如图所示.则的图象,可由函数的图象怎样变换而来(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向左平移个单位B.先把各点的横坐标缩短到原来的倍,再向右平移个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移个单位D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位3.的值()A.小于0 B.大于0 C.等于0 D.不小于04.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.5.中,已知,则角()A.90° B.105° C.120° D.135°6.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,7.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.8.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.9.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.10.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若,则角最大值为______.12.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.13.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.14.若是方程的解,其中,则______.15.在中,、、所对的边依次为、、,且,若用含、、,且不含、、的式子表示,则_______.16.已知不等式x2-x-a>0的解集为x|x>3或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.18.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.19.如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,……,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(2)求第13阶段“黄金数学草”的高度;20.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.21.已知函数,.(1)求函数的单调减区间;(2)若存在,使等式成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.2、B【解析】
根据图象可知,根据周期为知,过点求得,函数解析式,比较解析式,根据图像变换规律即可求解.【详解】由在一个周期内的图象可得,,解得,图象过点,代入解析式得,因为,所以,故,因为,将函数图象上点的横坐标变为原来的得,再向右平移个单位得的图象,故选B.【点睛】本题主要考查了由部分图像求解析式,图象变换规律,属于中档题.3、A【解析】
确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.4、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.5、C【解析】
由诱导公式和两角差的正弦公式化简已知不等式可求得关系,求出后即可求得.【详解】,∴,是三角形内角,,,则由得,∴,从而.故选:C.【点睛】本题考查两角差的正弦公式和诱导公式,考查正弦函数性质.已知三角函数值只要确定了角的范围就可求角.6、D【解析】
根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.7、B【解析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.8、B【解析】
根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).9、A【解析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【点睛】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.10、A【解析】所求的全面积之比为:,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题12、【解析】
由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【点睛】本题考查面积型几何概型概率的求法,属基础题.13、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.14、【解析】
把代入方程2cos(x+α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可.【详解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案为【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题.15、【解析】
利用诱导公式,二倍角公式,余弦定理化简即可得解.【详解】.故答案为.【点睛】本题主要考查了诱导公式,二倍角的三角函数公式,余弦定理,属于中档题.16、6【解析】
由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据向量坐标以及向量的数量积公式求出,利用辅助角公式即可求的解析式;(2),求出的范围,令,,则画函数图象,由两个函数与的图象有两个交点,建立不等关系即可求的值.【详解】解:(1),,,,,则,即;(2)因为,,令,,则画函数图象如下所示:,要使两个函数与的图象有两个交点,则,,解得解得.【点睛】本题主要考查三角函数的化简和求值,利用向量的数量积公式结合三角函数的辅助角公式将函数进行化简是解决本题的关键.18、(Ⅰ)(Ⅱ)【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A为钝角,所以.于是,,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(1)(2)【解析】
(1)根据示意图,计算出第阶段、第阶段生长的高度,即可求解出第阶段“黄金数学草”的高度;(2)考虑第偶数阶段、第奇数阶段“黄金数学草”高度的生长量之间的关系,构造数列,利用数列求和完成第阶段“黄金数学草”的高度的计算.【详解】(1)因为第一阶段:,所以第阶段生长:,第阶段的生长:,所以第阶段“黄金数学草”的高度为:;(2)设第个阶段生长的“黄金数学草”的高度为,则第个阶段生长的“黄金数学草”的高度为,第阶段“黄金数学草”的高度为,所以,所以数列按奇偶性分别成公比为等比数列,所以.所以第阶段“黄金数学草”的高度为:.【点睛】本题考查等比数列以及等比数列的前项和的实际应用,难度较难.处理数列的实际背景问题,第一步要能从实际背景中分离出数列的模型,然后根据给定的条件处理对应的数列计算问题,这对分析问题的能力要求很高.20、(1)证明见解析(2)【解析】试题分析:(1)做辅助线,先证及四边形为平行四边形平面;(2)利用勾股定理求得.试题解析:(1)证明:取中点,连接,则∵是的中点,∴;∵是的中点,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面;(2)∵,∴,∴21、(1),.(2)【解析】
(1)利用降次公式和辅助
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化产业园区运营管理合同(模板)3篇
- 剧院舞台地面铺设合同
- 私人会所大理石装修合同
- 水上赛艇鱼塘租赁协议
- 酒店协管员管理办法
- 生态农业灰土施工合同
- 门店租赁合同附装修项目清单
- 社区活动音响租赁合同
- 住宅小区绿化施工合同转让协议
- 设备转让协议书签订配供应
- 医院感染科护士的手术室感染控制培训
- 大棚项目施工安全措施计划方案
- 高中语文评价体系的构建与实施
- 安徽省合肥市蜀山区2023-2024学年七年级上学期期末生物试卷
- 变电站消防培训课件
- TSM0500G(阻燃性) 丰田试验测试标准
- 叠合板施工工艺及质量控制要点
- 公共卫生事业管理专业职业生涯规划书
- 花艺师年度工作总结
- 新目标汉语口语课本2课件-第2单元
- 二手车买卖合同(标准版范本)
评论
0/150
提交评论