2023年辽宁省盘锦市大洼区高级中学数学高一第二学期期末达标检测试题含解析_第1页
2023年辽宁省盘锦市大洼区高级中学数学高一第二学期期末达标检测试题含解析_第2页
2023年辽宁省盘锦市大洼区高级中学数学高一第二学期期末达标检测试题含解析_第3页
2023年辽宁省盘锦市大洼区高级中学数学高一第二学期期末达标检测试题含解析_第4页
2023年辽宁省盘锦市大洼区高级中学数学高一第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.2.已知直线经过两点,则的斜率为()A. B. C. D.3.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.34.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含5.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件6.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.47.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a49.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.201810.不等式组所表示的平面区域的面积为()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为.12.已知数列的前n项和,则___________.13.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.14.已知数列满足:(),设的前项和为,则______;15.正项等比数列中,存在两项使得,且,则的最小值为______.16.数列中,,,,则的前2018项和为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角所对的边分别为,且.(1)求的值;(2)若,求的面积.18.等差数列的前项和为,求数列前项和.19.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.20.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.21.若不等式恒成立,求实数a的取值范围。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

两直线斜率相等,且截距不相等。【详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【点睛】本题考查两直线平行,属于基础题.2、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。3、C【解析】

利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.4、B【解析】

计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.5、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题6、A【解析】

由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7、D【解析】

由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:

该几何体是一个底面半径,高的放在平面上的半圆柱,如图,

故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.8、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.9、A【解析】

通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,10、D【解析】

画出可行域,根据边界点的坐标计算出平面区域的面积.【详解】画出可行域如下图所示,其中,故平面区域为三角形,且三角形面积为,故选D.【点睛】本小题主要考查线性规划可行域面积的求法,考查数形结合的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

,故答案为3.12、17【解析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.13、【解析】

由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【点睛】本题考查面积型几何概型概率的求法,属基础题.14、130【解析】

先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.15、【解析】

先由已知求出公比,然后由求出满足的关系,最后求出的所有可能值得最小值.【详解】设数列公比为,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分别为2,,2,,,最小值为.故答案为:.【点睛】本题考查等比数列的性质,考查求最小值问题.解题关键是由等比数列性质求出满足的关系.接着求最小值,容易想到用基本不等式求解,但本题实质上由于,因此对应的只有5个,可以直接代入求值,然后比较大小即可.16、2【解析】

直接利用递推关系式和数列的周期求出结果即可.【详解】数列{an}中,a1=1,a2=2,an+2=an+1﹣an,则:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:数列的周期为1.a1+a2+a2+a4+a5+a1=0,数列{an}的前2018项和为:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案为:2【点睛】本题考查的知识要点:数列的递推关系式的应用,数列的周期的应用,主要考查学生的运算能力和转化能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)首先利用正弦定理边化角,再利用即可得到答案;(2)利用余弦定理和面积公式即可得到答案.【详解】(1),所以,所以,即因为,所以,所以,即.(2)因为,所以.由余弦定理可得,因为,所以,解得.故的面积为.【点睛】本题主要考查解三角形的综合应用,意在考查学生的基础知识,转化能力及计算能力,难度不大.18、【解析】

由已知条件利用等差数列前项和公式求出公差和首项,由此能求出,且,当时,,当时,。【详解】解得,设从第项开始大于零,则,即当时,当时,综上有【点睛】本题考查数列的前项和的求法,是中档题,注意等差数列的函数性质的运用。19、(1)(2)144【解析】

(1)把带入通项式即可求出公差,从而求出通项。(2)根据(1)的结果以及等差数列前项和公式即可。【详解】(1)设公差为,则则则(2)由等差数列求和公式得则所以当时,有最大值144【点睛】本题主要考查了等差数列的通项以及等差数列的前和公式,属于基础题20、(1)见证明;(2)【解析】

(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论