版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg2.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.53.若,且,恒成立,则实数的取值范围是()A. B.C. D.4.在中,,则=()A. B. C. D.5.实数数列为等比数列,则()A.-2 B.2 C. D.6.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是().A. B.C. D.7.已知,取值如下表:014561.3m3m5.67.4画散点图分析可知:与线性相关,且求得回归方程为,则m的值(精确到0.1)为()A.1.5 B.1.6 C.1.7 D.1.88.若,,那么在方向上的投影为()A.2 B. C.1 D.9.下列函数中最小值为4的是()A. B.C. D.10.直线2x+y+4=0与圆x+22+y+32=5A.255 B.455二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值为_______.12.下列结论中:①②函数的图像关于点对称③函数的图像的一条对称轴为④其中正确的结论序号为______.13.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.14.函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.15.若,则函数的最小值是_________.16.已知等差数列的前项和为,若,则=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.18.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.19.在数列中,,.(1)分别计算,,的值;(2)由(1)猜想出数列的通项公式,并用数学归纳法加以证明.20.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.21.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.2、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图3、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.4、C【解析】
解:因为由正弦定理,所以又c<a所以,所以5、B【解析】
由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.6、A【解析】试题分析:由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A.考点:斜二测画法.点评:注意斜二测画法中线段长度的变化.7、C【解析】
根据表格中的数据,求得样本中心为,代入回归直线方程,即可求解.【详解】由题意,根据表格中的数据,可得,,即样本中心为,代入回归直线方程,即,解得,故选C.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
根据定义可知,在方向上的投影为,代入即可求解.【详解】,,那么在方向上的投影为.故选:C.【点睛】本题考查向量数量积的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础试题.9、C【解析】
对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.10、C【解析】
先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
运用基本不等式求出结果.【详解】因为,所以,,所以,所以最小值为【点睛】本题考查了基本不等式的运用求最小值,需要满足一正二定三相等.12、①③④【解析】
由两角和的正切公式的变形,化简可得所求值,可判断①正确;由正切函数的对称中心可判断②错误;由余弦函数的对称轴特点可判断③正确;由同角三角函数基本关系式和辅助角公式、二倍角公式和诱导公式,化简可得所求值,可判断④正确.【详解】①,故①正确;②函数的对称中心为,,则图象不关于点对称,故②错误;③函数,由为最小值,可得图象的一条对称轴为,故③正确;④,故④正确.【点睛】本题主要考查三角函数的图象和性质应用以及三角函数的恒等变换,意在考查学生的化简运算能力.13、4【解析】
先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.14、1【解析】
由题意可得定点,,把要求的式子化为,利用基本不等式求得结果.【详解】解:且令解得,则即函数过定点,又点在直线上,,则,当且仅当时,等号成立,故答案为:1.【点睛】本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为,是解题的关键,属于基础题.15、【解析】
利用基本不等式可求得函数的最小值.【详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【点睛】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.16、【解析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2,6,14;(2)(3)【解析】
(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.18、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】
(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.19、(1),;
(2),证明见解析【解析】
(1)分别令即可运算得出,,的值;(2)由(1)可猜想出,当时成立,再假设当时,成立,再利用推导出即可.【详解】(1)令有;
令有;
令有所以,,(2)由(1)可得,,,,故可猜想.证明:当时,成立;假设当时,成立,且即当时,,即,化简得,,即也满足,当时成立,故对于任意的,有,证毕.所以.【点睛】本题主要考查了数学归纳法的运用,其中步骤为:(1)证明当取第一个值时命题成立.对于一般数列取值为0或1;(2)假设当()且为自然数)时命题成立,证明当时命题也成立.
综合(1)(2),对一切自然数,命题都成立.20、(1)(2)【解析】
(1)代入条件化简得,再由同角三角函数基本关系求出;(2)利用余弦定理、,把表示成关于的二次函数.【详解】(1),,即,,,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭供应链金融
- 燃气工程安全
- 技术人员个人工作计划5篇
- 专业实习报告
- 申请书格式范文模板(7篇)
- 环保主题演讲稿模板集合五篇
- 八年级政治教学计划三篇
- 财务类实习报告范文集锦七篇
- 高一演讲稿范文集锦4篇
- 给高考女儿的一封信15篇
- 《技术规程》范本
- 2024秋期国家开放大学本科《中国当代文学专题》一平台在线形考(形考任务一至六)试题及答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 重点语法清单2024-2025学年人教版英语八年级上册
- NGS与感染性疾病医学课件
- 2024版《大学生职业生涯规划与就业指导》 课程教案
- 人民日报出版社有限责任公司招聘笔试题库2024
- 2024年煤矿事故汇编
- Unit 7单元教案 2024-2025学年人教版(2024)七年级英语上册
- Unit 6 My sweet home(教学设计)-2024-2025学年外研版(三起)(2024)小学英语三年级上册
评论
0/150
提交评论