2023年安徽省蚌埠市第一中学数学高一下期末调研模拟试题含解析_第1页
2023年安徽省蚌埠市第一中学数学高一下期末调研模拟试题含解析_第2页
2023年安徽省蚌埠市第一中学数学高一下期末调研模拟试题含解析_第3页
2023年安徽省蚌埠市第一中学数学高一下期末调研模拟试题含解析_第4页
2023年安徽省蚌埠市第一中学数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.2.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.3.在中,根据下列条件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,4.在中,若则等于()A. B. C. D.5.函数的最大值为()A. B. C. D.6.如果,且,那么下列不等式成立的是()A. B. C. D.7.函数的简图是()A. B. C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.210.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,点在圆上,则等于.12.在中,已知,,,则角__________.13.已知一组数据,,,的方差为,则这组数据,,,的方差为______.14.已知函数分别由下表给出:123211123321则当时,_____________.15.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.16.数列的通项,前项和为,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,、分别是棱,的中点,求证:(1)平面;(2)平面平面.18.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.19.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.20.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.21.已知函数,.(1)求解不等式;(2)若,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.2、B【解析】

根据空间直角坐标系的坐标关系,即可求得点的坐标.【详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【点睛】本题考查了空间直角坐标系及坐标关系,属于基础题.3、D【解析】

根据三角形解的个数的判断条件得出各选项中对应的解的个数,于此可得出正确选项.【详解】对于A选项,,,此时,无解;对于B选项,,,此时,有两解;对于C选项,,则为最大角,由于,此时,无解;对于D选项,,且,此时,有且只有一解.故选D.【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.4、D【解析】

由正弦定理,求得,再由,且,即可求解,得到答案.【详解】由题意,在中,由正弦定理可得,即,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】

令,根据正弦型函数的性质可得,那么,可将问题转化为二次函数在定区间上的最值问题.【详解】由题意,令,可得,,∴,∴原函数的值域与函数的值域相同.∵函数图象的对称轴为,,取得最大值为.故选:D.【点睛】本题考查三角函数中的恒等变换、函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的使用,将问题转化为二次函数的值域问题.6、D【解析】

由,且,可得.再利用不等式的基本性质即可得出,.【详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.7、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.8、C【解析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.9、B【解析】

根据不等式组画出可行域,数形结合解决问题.【详解】不等式组确定的可行域如下图所示:因为可化简为与直线平行,且其在轴的截距与成正比关系,故当且仅当目标函数经过和的交点时,取得最小值,将点的坐标代入目标函数可得.故选:B.【点睛】本题考查常规线性规划问题,属基础题,注意数形结合即可.10、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.12、【解析】

先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、【解析】

利用方差的性质直接求解.【详解】一组数据,,,的方差为5,这组数据,,,的方差为:.【点睛】本题考查方差的性质应用。若的方差为,则的方差为。14、3【解析】

根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.15、【解析】

A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【点睛】本题考查正弦定理和等比数列运用,有一定的综合性.16、7【解析】

根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】

(1)设与的交点为,连结,证明,再由线面平行的判定可得平面;(2)由为线段的中点,点是的中点,证得四边形为平行四边形,得到,进一步得到平面.再由平面,结合面面平行的判定可得平面平面.【详解】证明:(1)设与的交点为,连结,∵四边形为平行四边形,∴为中点,又是的中点,∴是三角形的中位线,则,又∵平面,平面,∴平面;(2)∵为线段的中点,点是的中点,∴且,则四边形为平行四边形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【点睛】本题考查直线与平面,平面与平面平行的判定,考查空间想象能力与思维能力,是中档题.18、(1);(2)对一切正整数,有.【解析】

(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;(2)对一切正整数n,有,考虑当时,,再由裂项相消求和,即可得证。【详解】(1)当时,两式做差得,,当时,上式显然成立,。(2)证明:当时,可得由可得即有<则当时,不等式成立。检验时,不等式也成立,综上对一切正整数n,有。【点睛】本题考查数列递推式,考查数列求和,考查裂项法的运用,确定数列的通项是关键.19、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【点睛】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.20、(1)证明见详解;(2)证明见详解【解析】

(1)取的中点,证出,再利用线面平行的判定定理即可证出.(2)利用线面垂直的判定定理可证出平面,再根据线面垂直的定义即可证出.【详解】如图,取的中点,连接,E为PB中点,,且,又,,,,为平行四边形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因为,,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论