版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,三点,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.等腰直角三角形2.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.3.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.14.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列5.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.6.某四棱锥的三视图如图所示,则它的最长侧棱的长为()A. B. C. D.47.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.98.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=9.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆10.已知为等差数列,,则的值为()A.3 B.2 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.12.计算__________.13.已知sin+cosα=,则sin2α=__14.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)15.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.16.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在公差不为零的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,求数列的前项和.18.已知函数为奇函数,且.(1)求实数a与b的值;(2)若函数,数列为正项数列,,且当,时,,设(),记数列和的前项和分别为,且对有恒成立,求实数的取值范围.19.2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.(1)估计知识竞赛成绩的中位数和平均数;(2)从,分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.20.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.21.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
计算三角形三边长度,通过边关系进行判断.【详解】由两点之间的距离公式可得:,,,因为,且故该三角形为等腰直角三角形.故选:D.【点睛】本题考查两点之间的距离公式,属基础题.2、C【解析】
设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.3、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.4、B【解析】
根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.5、D【解析】
先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.6、C【解析】
由三视图可知:底面,,底面是一个直角梯形,,,均为直角三角形,判断最长的棱,通过几何体求解即可.【详解】由三视图可知:该几何体如图所示,则底面,,底面是一个直角梯形,其中,,,,可得,,均为直角三角形,最长的棱是,.故选:C.【点睛】本题考查了三视图,线面垂直的判定与性质定理,考查了推理能力与计算能力,属于基础题.7、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.9、D【解析】原方程即即或故原方程表示两个半圆.10、D【解析】
根据等差数列下标和性质,即可求解.【详解】因为为等差数列,故解得.故选:D.【点睛】本题考查等差数列下标和性质,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.12、【解析】
采用分离常数法对所给极限式变形,可得到极限值.【详解】.【点睛】本题考查分离常数法求极限,难度较易.13、【解析】∵,∴即,则.故答案为:.14、①②⑤【解析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.15、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.16、7【解析】
利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)先根据已知求出公差d,即得的通项公式;(2)先证明数列是等比数列,再利用等比数列的前n项和公式求.【详解】(1)设等差数列的公差为,由已知得,则,将代入并化简得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以数列是首项为2,公比为4的等比数列.所以.【点睛】本题主要考查等差数列通项的求法,考查等比数列性质的证明和前n项和的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2)【解析】
(1)根据函数奇偶性得到,再由,得;(2),将原式化简得到,进而得到,数列的前项和,,原恒成立问题转化为对恒成立,对n分奇偶得到最值即可.【详解】(1)因为为奇函数,,得,又,得.(2)由(1)知,得,又,化简得到:,又,所以,又,故,则数列的前项和;又,则数列的前项和为,对恒成立对恒成立对恒成立,令,则当为奇数时,原不等式对恒成立对恒成立,又函数在上单增,故有;当为偶数时,原不等式对恒成立对恒成立,又函数在上单增,故有.综上得.【点睛】这个题目考查了函数的奇偶性的应用以及数列通项公式的求法,数列前n项和的求法,还涉及不等式恒成立的问题,属于综合性较强的题目,数列中最值的求解方法如下:1.邻项比较法,求数列的最大值,可通过解不等式组求得的取值范围;求数列的最小值,可通过解不等式组求得的取值范围;2.数形结合,数列是一特殊的函数,分析通项公式对应函数的特点,借助函数的图像即可求解;3.单调性法,数列作为特殊的函数,可通过函数的单调性研究数列的单调性,必须注意的是数列对应的是孤立的点,这与连续函数的单调性有所不同;也可以通过差值的正负确定数列的单调性.19、(1)中位数为80.平均数为(2)【解析】
(1)由频率分布直方图可知,利用中位数和平均数的计算公式,即可求解.(2)由频率分布直方图可知,分别求得,分数段中答卷数,利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由频率分布直方图可知,前3个小矩形的面积和为,后2个小矩形的面积和为,所以估计中位数为80.估计平均数为.(2)由频率分布直方图可知,分数段中答卷数分别为12,8,抽取比例为,所以,分数段中抽取的答卷数分别为3,2.记中对应的3为党员为,,,中对应的2为党员为,.则从中选出对应的3位党员,共有不同的选法总数10种:,,,,,,,,,.易知有2位来自于分数段的有3种,故所求概率为.【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的计算,其中解答中熟记频率直方图中中位数和平均数的计算方法,以及准确利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度租赁合同终止与租赁物处理及收益分配协议3篇
- 二零二五年度城市综合体卫生间清洁及品牌形象塑造协议2篇
- 西安理工大学高科学院《影视音乐基础》2023-2024学年第一学期期末试卷
- 2024汽车烤漆房租赁合同及环保设施租赁与维护协议3篇
- 2025年度智慧城市基础设施建设合同6篇
- 2024版新能源发电项目投资与建设合同
- 二零二五年度板材研发与生产技术转移合同2篇
- 二零二五年度大理石矿山开采与环保治理综合服务合同3篇
- 二零二五年物联网设备集成技术服务协议
- 天津外国语大学滨海外事学院《物理化学实验Ⅱ》2023-2024学年第一学期期末试卷
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-上(单选题)
- 鹧鸪山隧道瓦斯地段专项施工方案
- HG∕T 2058.1-2016 搪玻璃温度计套
- 九宫数独200题(附答案全)
- 泌尿科一科一品汇报课件
- 白铜锡电镀工艺
- 拜耳法氧化铝生产工艺
- 2024年南京信息职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 部编版二年级下册道德与法治第二单元《我们好好玩》全部教案
- 幼儿园利剑护蕾专项行动工作方案总结与展望
- 合同信息管理方案模板范文
评论
0/150
提交评论