版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年贵州省贵阳市息烽县九庄中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=的定义域为()A.(﹣1,+∞) B.(﹣1,3) C.(3,+∞) D.[3,+∞)参考答案:C【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组得答案.【解答】解:由,解得x>3.∴函数y=的定义域为(3,+∞).故选:C.【点评】本题考查函数的定义域及其求法,考查了指数不等式的解法,是基础题.2.在等差数列{an}中,,且,Sn为其前n项和,则使的最大正整数n为(
)A.202 B.201 C.200 D.199参考答案:D【分析】根据条件判断出等差数列中正负项的分界点,然后再结合等差数列的前项和公式和下标和的性质求解即可.【详解】由条件得,等差数列的公差,∵,且,∴,即.∴,,∴使的最大正整数为.故选D.【点睛】解答类似问题的关键是找到数列的项或和的正负值的分界点,其中利用等差数列中项的下标和的性质和前项和的结合是解题的突破口,考查灵活运用知识解决问题和分析能力,属于中档题.3.要得到的图象,只要将函数的图象()A.向左平移单位 B.向右平移单位C.向左平移单位 D.向右平移单位参考答案:D【分析】将初始函数化简,然后根据三角函数图像平移的知识得出正确选项.【详解】初始函数,向右平移个单位得到,故选D.【点睛】本小题主要考查三角函数图像变换的知识,属于基础题.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若,,,则角B等于().A.60°或120°
B.30°或150°
C.60°
D.120°参考答案:A分析:直接利用正弦定理即可得结果.详解:∵中,,,,∴由正弦定理得:,∵,∴,则或,故选.点睛:本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.过点(1,2)且与原点的距离最大的直线方程是(
).A.2x+y-4=0
B.x+2y-5=0
C.x+3y-7=0
D.3x+y-5=0参考答案:B6.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,BC=,AC=1,∠ACB=90°,则此球的体积等于()A.π B.π C.π D.8π参考答案:C【考点】球的体积和表面积.【分析】利用三棱柱ABC﹣A1B1C1的侧棱垂直于底面,棱柱的体积为为,BC=,AC=1,∠ACB=90°,求出AA1,再求出△ABC外接圆的半径,即可求得球的半径,从而可求球的体积.【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,棱柱的体积为,BC=,AC=1,∠ACB=90°,∴AA1=∴AA1=2,∵BC=,AC=1,∠ACB=90°,△ABC外接圆的半径R=1,∴外接球的半径为=,∴球的体积等于=π,故选:C.7.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3 B.f(x)=lgx C. D.f(x)=3x参考答案:D【考点】函数单调性的判断与证明;函数的值.【专题】函数思想;数学模型法;函数的性质及应用;推理和证明.【分析】可先设f(x)为指数函数,并给出证明,再根据指数函数单调性的要求,得出D选项符合题意.【解答】解:指数函数满足条件“f(x+y)=f(x)f(y)”,验证如下:设f(x)=ax,则f(x+y)=ax+y,而f(x)f(y)=ax?ay=ax+y,所以,f(x+y)=f(x)f(y),再根据题意,要使f(x)单调递增,只需满足a>1即可,参考各选项可知,f(x)=3x,即为指数函数,又为增函数,故答案为:D.【点评】本题主要考查了指数函数的图象与性质,以及同底指数幂的运算性质,属于基础题.8.计算的值为(
)A. B. C. D.参考答案:D【分析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.9.定义在R上的函数满足则的值为(
)A.、
B、3
C、
D、参考答案:A10.在△ABC中,AB=5,BC=7,AC=8,则的值为(
)A.79
B.69
C.5
D.-5参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.二项式的展开式中第5项的二项式系数为
▲
.(用数字作答)参考答案:1512.已知各项均为正数的等比数列{an},满足,则______.参考答案:各项均为正数的因为是等比数列,所以,又因为各项均为正数,所以,故答案为.13.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为
.参考答案:1【考点】7F:基本不等式.【分析】由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,可得z=x2﹣3xy+4y2.于是==,利用基本不等式即可得到最大值,当且仅当x=2y>0时取等号,此时z=2y2.于是+﹣==,再利用二次函数的单调性即可得出.【解答】解:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2.∴===1,当且仅当x=2y>0时取等号,此时z=2y2.∴+﹣==≤1,当且仅当y=1时取等号,即+﹣的最大值是1.故答案为1.14.函数的定义域是
.参考答案:15.已知是三个不同的平面,命题“且”是真命题,如果把中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有▲个;参考答案:2
略16.若a=0.32,b=log20.3,c=20.3,则a,b,c的大小关系(由小到大是). 参考答案:b<a<c【考点】对数值大小的比较. 【专题】计算题. 【分析】由0<a=0.32<1,b=log20.3<log21=0,c=20.3>20=1,能判断a,b,c的大小关系.【解答】解:∵0<a=0.32<1, b=log20.3<log21=0, c=20.3>20=1, ∴b<a<c. 故答案为:b<a<c. 【点评】本题考查a,b,c的大小关系的判断,解题时要认真审题,注意对数函数、指数函数的性质的灵活运用. 17.已知是奇函数,当时,,则_______________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求函数的单调递增区间;(2)若,,求的值.参考答案:略19.已知函数.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当时,若f(x)≥log2t恒成立,求t的取值范围.参考答案:【考点】两角和与差的正弦函数;函数恒成立问题;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】(Ⅰ)函数解析式利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数f(x)的最小正周期,根据正弦函数的单调性即可确定出f(x)的单调递增区间;(Ⅱ)由x的范围求出这个角的范围,利用正弦函数的值域确定出f(x)的最小值,根据f(x)≥log2t恒成立,得到log2t小于等于f(x)的最小值,即可确定出t的范围.【解答】解:(I)f(x)=sin2x﹣cos2x+1=2sin(2x﹣)+1,∵ω=2,∴函数f(x)最小正周期是T=π;当2kπ﹣≤2x﹣≤2π+,k∈Z,即kπ﹣≤x≤kπ+,k∈Z,函数f(x)单调递增区间为[kπ﹣,kπ+],k∈Z;(II)∵x∈[,],∴2x﹣∈[0,],∴f(x)=2sin(2x﹣)+1的最小值为1,由f(x)≥log2t恒成立,得log2t≤1=log22恒成立,∴0<t≤2,即t的取值范围为(0,2].【点评】此题考查了两角和与差的正弦函数公式,函数恒成立问题,以及正弦函数的单调性,熟练掌握公式是解本题的关键.20.在△ABC中,角A、B、C所对的边为a、b、c,且满足cos2A﹣cos2B=(1)求角B的值;(2)若且b≤a,求的取值范围.参考答案:【考点】正弦定理的应用;三角函数中的恒等变换应用.【分析】(1)由条件利用三角恒等变换化简可得2﹣2sin2A﹣2cos2B=﹣2sin2A,求得cos2B的值,可得cosB的值,从而求得B的值.(2)由b=≤a,可得B=60°.再由正弦定理可得.【解答】解:(1)在△ABC中,∵cos2A﹣cos2B==2(cosA+sinA)(cosA﹣sinA)=2(cos2A﹣sin2A)=cos2A﹣sin2A=﹣2sin2A.又因为cos2A﹣cos2B=1﹣2sin2A﹣(2cos2B﹣1)=2﹣2sin2A﹣2cos2B,∴2﹣2sin2A﹣2cos2B=﹣2sin2A,∴cos2B=,∴cosB=±,∴B=或.(2)∵b=≤a,∴B=,由正弦====2,得a=2sinA,c=2sinC,故a﹣c=2sinA﹣sinC=2sinA﹣sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款房抵押合同范例
- 齿轮采购合同模板
- 2024年度新能源汽车产业担保合同3篇
- 2024年度技术转让合同标的与义务3篇
- 正规购楼合同范例
- 车辆补充协议合同范例
- 期货投资咨询合同范例
- 建房包干合同范例
- 2024年度城市供水合同:某城市供水管网建设与运营3篇
- 造价设计费合同范例
- 1:1000地形图测绘质检报告
- 斯瓦西里语常用词(网上收集整理版)
- VI视觉形象识别系统设计在校园文化建设中的作用
- 完整版钢箱梁安装及叠合梁施工
- 长亚自动定位打孔机使用说明书
- 第六章、船舶通信设备
- 浅谈如何抓好重点项目前期工作
- 智慧树知到《配位化学本科生版》章节测试答案
- 捐赠合同协议书范本 红十字会
- 4.机电安装项目质量目标与控制措施
- 内蒙古呼和浩特市中小学生家长营养知识现状调查
评论
0/150
提交评论