版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年江苏省南京市南师大附属扬子中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设为数列的前项之和.若不等式对任何等差数列及任何正整数恒成立,则的最大值为
A.
B.
C.
D.
参考答案:答案:B2.已知实数2,a,8构成一个等比数列,则圆锥曲线的离心率为A. B. C. D.参考答案:D略3.在的展开式中,项的系数为
(
)A.45 B.36 C.60 D.120参考答案:B4.为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生,得到如图的频率分布直方图.由于不慎丢失部分数据,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到4.9之间的学生数为b,则a,b的值分别为
A.0.27,132
B.0.27,166
C.2.7,132
D.2.7,166参考答案:A略5.已知向量若函数在区间上存在增区间,则t的取值范围为(
)A.
B.
C.
D.参考答案:D略6.已知集合,,则A.
B.
C.
D.参考答案:C7.下列判断正确的是
(
)A.若命题为真命题,命题为假命题,则命题“”为真命题B.命题“若,则”的否命题为“若,则”C.“”是“”的充分不必要条件D.命题“”的否定是“”参考答案:D8.要得到函数y=3cos(2x一)的图象,可以将函数y=3sin2x的图象(
)A.向左平移个单位
B.向右平移个单位C.向左平移个单位
D.向右平移个单位参考答案:A略9.从已编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25
B.3,13,23,33,43C.1,2,3,4,5
D.2,4,6,16,32参考答案:B10.已知是函数与图象的两个不同的交点,则的取值范围是
A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知是定义在R上的函数,且满足,现有四个命题:①是周期函数;且周期为2;
②当;
③是偶函数;④
其中正确命题是
参考答案:答案:①②④12.规定记号“”表示一种运算,即.若,则函数的值域是
参考答案:(1,+∞)由a△b=ab+a+b,a,b∈R+,若1△k=3,则1?k+1+k=3,解得k=1,∴函数f(x)=k△x=1△x=1?x+1+x=2x+1,其中x∈R+,∴2x+1>1,∴f(x)的值域是(1,+∞).故答案为:(1,+∞).
13.三角形ABC面积为,BC=2,C=,则边AB长度等于______.参考答案:2略14.已知双曲线,它的渐近线方程是y=±2x,则a的值为
.参考答案:2【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程可得其渐近线方程为:y=±ax,结合题意中渐近线方程可得a=2,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,其渐近线方程为:y=±ax,又有其渐近线方程是y=±2x,则有a=2;故答案为:2.15.读程序,完成下面各题(1)输出结果是
.
(2)输出结果是
.参考答案:(1)2,3,2
(2)616.已知直线⊥平面,直线m平面,有下面四个命题:①∥⊥m;②⊥∥m;③∥m⊥;④⊥m∥其中正确命题序号是
.参考答案:①③17.实数,满足,目标函数的最大值为
.参考答案:-1如图区域为开放的阴影部分,可求,函数过点时,.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.
参考答案:【知识点】直线与平面所成的角;直线与平面垂直的判定.G12【答案解析】(1)证明:略;(2).
解析:(1)证明:连接BD,在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2,得AB2=AC2+BC2,即AC⊥BC.又平面ABC⊥平面BCDE,从而AC⊥平面BCDE.(2)在直角梯形BCDE中,由BD=BC=,DC=2,得BD⊥BC.又平面ABC⊥平面BCDE,所以BD⊥平面ABC.作EF∥BD,与CB的延长线交于点F,连接AF,则EF⊥平面ABC.所以∠EAF是直线AE与平面ABC所成的角.在Rt△BEF中,由EB=1,∠EBF=,得EF=,BF=;在Rt△ACF中,由AC=,CF=,得AF=.在Rt△AEF中,由EF=,AF=,得tan∠EAF=.所以,直线AE与平面ABC所成的角的正切值是.【思路点拨】(Ⅰ)如图所示,取DC的中点F,连接BF,可得DF=DC=1=BE,于是四边形BEDF是矩形,在Rt△BCF中,利用勾股定理可得BC==.在△ACB中,再利用勾股定理的逆定理可得AC⊥BC,再利用面面垂直的性质定理即可得出结论.(Ⅱ)过点E作EM⊥CB交CB的延长线于点M,连接AM.由平面ABC⊥平面BCDE,利用面面垂直的性质定理可得:EM⊥平面ACB.因此∠EAM是直线AE与平面ABC所成的角.再利用勾股定理和直角三角形的边角关系即可得出.19.在△ABC中,角A、B、C的对边分别为a.b.c,且,,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.参考答案:【考点】余弦定理的应用.【分析】(1)将展开,根据余弦定理可求出cosA的值,进而得到角A的值;将角A的值代入,再运用余弦函数的二倍角公式可得到sinB=1+cosC,再由可求出角C的值,最后根据三角形内角和为180°得到角B的值.(2)先设出AC的长,根据余弦定理可求出x,再由三角形的面积公式可得答案.【解答】解:(Ⅰ)由,∴,由,得即sinB=1+cosC则cosC<0,即C为钝角,故B为锐角,且则故.(Ⅱ)设AC=x,由余弦定理得解得x=2故.【点评】本题主要考查余弦定理和三角形面积公式的应用.在做这种题型时经常要用三内角之间的相互转化,即用其他两个角表示出另一个的做法.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(﹣1,0),F2(1,0),点A(1,)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M、N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线l的方程;若不存在,说明理由.参考答案:【考点】K4:椭圆的简单性质.【分析】(Ⅰ)方法一、运用椭圆的定义,可得a,由a,b,c的关系,可得b=1,进而得到椭圆方程;方法二、运用A在椭圆上,代入椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)设直线l的方程为y=2x+t,设M(x1,y1),N(x2,y2),P(x3,),Q(x4,y4),MN的中点为D(x0,y0),联立椭圆方程,运用判别式大于0及韦达定理和中点坐标公式,由向量相等可得四边形为平行四边形,D为线段MN的中点,则D为线段PQ的中点,求得y4的范围,即可判断.【解答】解:(Ⅰ)方法一:设椭圆C的焦距为2c,则c=1,因为A(1,)在椭圆C上,所以2a=|AF1|+|AF2|=+=2,因此a=,b2=a2﹣c2=1,故椭圆C的方程为+y2=1;方法二:设椭圆C的焦距为2c,则c=1,因为A(1,)在椭圆C上,所以c=1,a2﹣b2=c2,+=1,解得a=,b=c=1,故椭圆C的方程为+y2=1;(Ⅱ)设直线l的方程为y=2x+t,设M(x1,y1),N(x2,y2),P(x3,),Q(x4,y4),MN的中点为D(x0,y0),由消去x,得9y2﹣2ty+t2﹣8=0,所以y1+y2=,且△=4t2﹣36(t2﹣8)>0故y0==且﹣3<t<3,由=,知四边形PMQN为平行四边形,而D为线段MN的中点,因此D为线段PQ的中点,所以y0==,可得y4=,又﹣3<t<3,可得﹣<y4<﹣1,因此点Q不在椭圆上,故不存在满足题意的直线l.21.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.参考答案:(Ⅰ)证明:连接,
在中,分别是的中点,所以,又,所以,又平面ACD,DC平面ACD,所以平面ACD(Ⅱ)解析:在中,,所以
而DC平面ABC,,所以平面ABC
而平面ABE,所以平面ABE平面ABC,所以平面ABE由(Ⅰ)知四边形DCQP是平行四边形,所以
所以平面ABE,所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在中,
,所以22.(本题满分10分)如图,底面为正三角形,面,面,,设为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
参考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《蒸汽疏水阀与节能》课件
- 2023年广东省揭阳市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- ABB工业机器人应用技术 课件 模块二 工业机器人基本操作 第1章 ABB机器人的基础操作知识
- 2021年江西省鹰潭市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- ABB工业机器人应用技术 课件 8.8 工业机器人控制柜常见故障的诊断
- ABB工业机器人应用技术 课件 1.5 ABB机器人的转数计数器更新操作
- 2024年版广西事业单位人事聘用协议一
- 2024年版人力资源部经理岗位聘用合同版
- 《建筑业电子商务》课件
- 2024年汽车租赁合同租赁车辆及条款
- 心理健康课件教学课件
- 贵州省建筑工程施工资料管理导则
- 2024年度钢模板生产与销售承包合同3篇
- 《QHSE体系培训》课件
- 计量经济学论文-城镇单位就业人员工资总额的影响因素
- 《农业企业经营管理》试题及答案(U)
- 山东省聊城市2024-2025学年高一上学期11月期中物理试题
- 孙悟空课件教学课件
- 华南理工大学《自然语言处理》2023-2024学年期末试卷
- 新能源行业光伏发电与储能技术方案
- 中国高血压防治指南(2024年修订版)要点解读
评论
0/150
提交评论