(人教版)武汉七年级数学上册第一章《有理数》知识点总结(答案解析)_第1页
(人教版)武汉七年级数学上册第一章《有理数》知识点总结(答案解析)_第2页
(人教版)武汉七年级数学上册第一章《有理数》知识点总结(答案解析)_第3页
(人教版)武汉七年级数学上册第一章《有理数》知识点总结(答案解析)_第4页
(人教版)武汉七年级数学上册第一章《有理数》知识点总结(答案解析)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1111.丁丁做了4道计算题:①(―1)2018=2018;②0-(-1)=—1;③-1+---=-;32611@-+(-5)=-1请你帮他检查一下,他一共做对了()道A.1道 B.2道 C.3道 D.4道A解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①(-1)2018=1,故本小题错误;②0-(-1)=1,故本小题错误;11 7③-1+-—-=—-,故本小题错误;32 611®—+(-3=-1,正确;所以,他一共做对了1题.故选A.【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.2.一个因数扩大到原来的10倍,另一个因数缩小到原来的《,积()A.缩小到原来的1 B.扩大到原来的10倍乙1C.缩小到原来的正 D.扩大到原来的2倍A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b「•两数乘积为ab_1,1,根据题意,得10a^—b=5ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.某测绘小组的技术员要测量4B两处的高度差(4B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:丧力h£-hD黑fFAb-4,5T.7一681.93.6根据以上数据,可以判断4B之间的高度关系为( )A.B处比A处高 B.A处比B处高C.A,B两处一样高 D.无法确定B解析:B【分析】根据题意列出算式,A,B之间的高度差h-h,结果大于0,则A处比B处高,结果小

AB于0,则B处比A处高,结果等于0,则A,B两处一样高.【详解】根据题意,得:(h-h)-(h-h)-(h-h)-(h-h)-(h-h)ADEDFEGFBG=h-h-h+h-h+h-h+h-h+hADEDFEGFBG=h-hAB将表格中数值代入上式,得h-h=4-5-(-1.7)-(一。.8)-1.9—3.6=1.5ABv1.5>0・•.h>hAB故选B.【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.下列各式中,不相等的是( )A.(-5)2和52 B.(-5)2和-52C.(-5)3和-53 D.|-5|3和|-53|B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A:(-5)2=(-5)(-5)=52选项B:(-5)2=(-5)(-5)=52=25;-52=-(5*5)=-25「.(-5)2丰-52选项C:(-5)3=(-5)(-5)(-5)=-125;-53=-(5*5*5)=-125・・•(-5)3=-53选项D:|-5|3=|-5|x|-5|x|-5|=5*5*5=125;-53=|-(5*5*5)|=|-125|=125|-5|3=-53故选B.【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.下列各数中,互为相反数的是()A.+卜2)与-2B.+(+2)与-(-2)C.-(-2)与2D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】+(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;+(+2)=2,-(-2)=2,故B选项中的两个数不互为相反数;C.-(-2)=2,2=2,故C选项中的两个数不互为相反数;D.-|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.TOC\o"1-5"\h\z6.下列有理数大小关系判断正确的是( )(1\ 1A. >-- B.0>-10k97 10C.|-3|<|+3| D,-1>-0.01A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】TOC\o"1-5"\h\z..(111 1_1 1 1•—————・ —— ・—> ・k979 10 10,9 10,(1\ 1一一式>--,故选项A正确;k97 10|-10|—10,0<10,0<-10,故选项B不正确;|-3|=3,|+3|=3,-3氏3,故选项C不正确;-1|=1,「0.01|=0.01,1>0.01,」.—1<一0.01,故选项D不正确.故选:A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.TOC\o"1-5"\h\z.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( ) 1 1 1 1~। 1 iaJ0 1二dA.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较.解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小..如果|a|=—a,下列成立的是()A.-a一定是非负数 B.—a一定是负数C.|a|一定是正数 D.|a|不能是0A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】,「|a|=-a,「.a<0,A、正确,,「|a|=-a,「.-a—0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】

本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.9.绝对值大于1小于4的整数的和是( )A.0 B.5 C.-5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列结论错误的是()A.若a,b异号,则a•b<0,a<0bB.若a,b同号,则a•b>0,—>0bC.D.解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正a确;根据有理数的除法法则可得选项D原式二b,选项D错误,故选D.11.下列运算正确的是()A.211.下列运算正确的是()A.2+(-2>=113C.一5^—x—=一2535B.D.(1、3-2-I 3J=-827133-x(-3.25)-6—x3.25=-32.5D44解析:D【分析】根据有理数的乘方运算可判断A、B,根据有理数的乘除运算可判断C,利用乘法的运算律进行计算即可判断D.【详解】A、-22+(-2»=-4+4=-1,该选项错误;B、(1B、(1、3-2-I 3J343_1°19— ——12-,27 27该选项错误;TOC\o"1-5"\h\z13 3C、—5--X—=-5X3X—=—9,该选项错误;35 51 3 13 27 1327D、3-x(-3.25)-6—x3.25=-x3.25--x3.25=-3.25x(+一)=32.5,该选正确;4 4 4 4 44故选:D.【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克 B.—0.02克 C.0克 D.+0.04克B解析:B【解析】—0.02克,选A.13.一名粗心的同学在进行加法运算时,将“—5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.14.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则a=-1.③如果a大于b,那么ab的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤X2-2X-33X3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个 B.5个 C.6个 D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;a②若a,b互为相反数,则b=-1在a、b均为0的时候不成立,故本小题错误;③;如果a=2,b=0,a>b,但是b没有倒数,・•.a的倒数小于b的倒数不正确,•••本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤X2-2X-33X3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.IX—21Ix—11IxI15.若1VxV2,则———--——+——的值是()x-2 1-xxA.-3 B.-1 C.2 D.1D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:・.・l<x<2,「.x-2<0,x-1>0,x>0,原式=-1+1+1=1,故选:D.【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号..x-3+(y+2)2=0,则yx为.-8【分析】根据绝对值的非负性和偶次方的非负性求出xy的值然后代入代数式中计算即可【详解】解::.•・x-3=0y+2=0解得:x=3y=-2」.==-8故答案为:-8【点睛】本题考查代数式求值绝对值乘方解析:-8【分析】根据绝对值的非负性和偶次方的非负性求出x、y的值,然后代入代数式中计算即可.【详解】解:|x-3|+(y+2)2=0,「.x-3=0,y+2=0,解得:x=3,y=-2,「.yx=(-2)3=-8,故答案为:-8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键..在|-3|、-32、-(-3)2、-(3-兀)、-|0|中,负数的个数为.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】:|-3|=3-32=-9-(-3)2=-9-(3-n)=n-3-|0|二0二-32-(-3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】「|-3|=3,32=-9,(-3)2=-9,(3-n)=n-3,|0|=0,:-32、-(-3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.3.已知|a|=3,|b|=2,且ab<0,则a-b=.5或-5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a-b中求值即可【详解】解::|a|=3|b|=2「.a=±3b=±2;;ab<0「.当a=3时b=-2;当a=-3时b解析:5或-5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a-b中求值即可.【详解】解::|a|=3,|b|=2,「.a=±3,b=±2;:ab<0,「.当a=3时b=-2;当a=-3时b=2,「.a-b=3-(-2)=5或a-b=-3-2=-5.故填5或-5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.4.绝对值不大于2.1的所有整数是 ,其和是 .-2-10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有-2-1012之和为-2-1+0+1+2=0故答案为:-2-1012;0【点评】此题考查了绝对值解析:-2,-1,0,1,20【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有-2、-1、0、1、2,之和为-2-1+0+1+2=0,故答案为:-2,-1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.5.运用加法运算律填空:(1)[(—1)+2]+(—4)=—=—;(2)117+(—44)+(—17)+14=—=—.(—1)+(—4)+2-3117+(—17)+(—44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(—1)+(—4)]+2-3[117+(—17)]+[(—44)+14]70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(—1)+(—4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(—1)+2]+(—4)=[(—1)+(—4)]+2=-3(2)117和(—17)可通过抵消凑整,(—44)和14也可通过抵消凑整,故:117+(—44)+(—17)+14=[117+(—17)]+[(—44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算..计算—32+5—8x(—2)时,应该先算,再算,最后算.正确的结果为 .乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的..校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第 次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6x(7-3)=24(cm),离胜利还差30—24=6(cm),所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.当喊到第6次时,一共拉过了6x(7—3)=24(cm).离胜利还差30-24=6(cm),所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键..气温由-20℃下降50℃后是_℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.丁-20-50=-20+(-50)=-70「•答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键..下列各组式子:①a-b与-a-b,②a+b与-a-b,③a+1与1-a,④-a+b与a-b,互为相反数的有_.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键..截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为—.051x107【分析】绝对值大于10的数用科学记数法表示一般形式为ax10nn为整数位数减1【详解】解:1051万=10510000=1051x107故答案为:1051x107【点睛】本题考查了科学解析:051x107【分析】绝对值大于10的数用科学记数法表示一般形式为ax10n,n为整数位数减1.【详解】解:1051万=10510000=1.051x107.故答案为:1.051x107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,.(1)圆周率n=3.1415926…,取近似值3.142,是精确到位;⑵近似数2.428x105精确到一位;⑶用四舍五入法把3.1415926精确到百分位是—,近似数3.0x106精确到位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分(2)百(3)3.14十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:⑴圆周率兀=3.1415926…,取近似值3.142,是精确到千分位;⑵近似数2.428x105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;⑶用四舍五入法把3.1415926精确到百分位是3.14,近似数3.0x106精确到十万位.故答案为:⑴千分;⑵百;(3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.1.探索代数式02-2勿7+从与代数式(。-与2的关系(1)当〃=5,》=-2时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:20182-2x2018x2019+20192解析:(1)49,49;(2)a2-2ab+b2=(a-b)2;(3)1.【分析】(1)将a、b的值分别代入a2-2ab+b2与(a-b)2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a=5,b=-2时,32-2ab+b2=52-2x5x(-2)+(-2)2=25+20+4=49,(a-b)2=[5-(-2)]2=72=49;(2)根据(1)的计算,可得规律:a2-2ab+b2=(a-b)2;(3)20182-2x2018x2019+20192=(2018-2019)2=(-1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.2.点A、B在数轴上所表示的数如图所示,回答下列问题:A BIIIj!111111111k-6-5-4-3-2-10I2 34 5x(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论