版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则2.若是两条不同的直线,是三个不同的平面,则下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列4.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或5.已知集合,则()A. B. C. D.6.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人7.已知,则的值构成的集合为()A. B. C. D.8.已知,,,则的最小值为()A. B. C.7 D.99.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.10.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.若,则=_________12.已知三点、、共线,则a=_______.13.函数在区间上的值域为______.14.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.15.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.16.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.18.在中,内角A、B、C所对的边分别为,,,已知.(Ⅰ)求角B的大小;(Ⅱ)设,,求.19.求过三点的圆的方程,并求这个圆的半径和圆心坐标.20.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.21.已知,为第二象限角.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.2、C【解析】
试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个相交平面内的直线也可以平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行或相交,所以D不正确;根据面面垂直的判定定理知C正确.考点:空间直线、平面间的位置关系.【详解】请在此输入详解!3、C【解析】
依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。4、C【解析】
由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.5、A【解析】
由,得,然后根据集合的交集运算,即可得到本题答案.【详解】因为,所以.故选:A【点睛】本题主要考查集合的交集运算及对数不等式.6、B【解析】
根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.7、B【解析】
根据的奇偶分类讨论.【详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【点睛】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.8、B【解析】
根据条件可知,,,从而得出,这样便可得出的最小值.【详解】;,且,;;,当且仅当时等号成立;;的最小值为.故选:.【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.9、B【解析】
先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.10、D【解析】
把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵,∴∴=1×[+]=1.故答案为:1.12、【解析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.13、【解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.14、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题15、(或写成)【解析】
光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。16、2【解析】
根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【详解】由题意,可得,即,解得.【点睛】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)=2(Ⅱ)【解析】
(I)计算,结合两向量的模可得;(II)利用,把求模转化为向量的数量积运算.【详解】解:(Ⅰ)由题意得即又因为所以解得=2.(Ⅱ)因为,所以=16+36-4×2=44.又因为所以.【点睛】本题考查平面向量的数量积,解题关键是掌握性质:,即模数量积的转化.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化简整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【详解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,则.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【点睛】本题考查了正弦定理、余弦定理、和差公式,考查了推理能力与计算能力,属于中档题.19、(x﹣4)2+(y+3)2=21,圆的半径为【解析】
设出圆的一般方程,把代入所设,得到关于的方程组,求解,即可求得圆的一般方程,化为标准方程,进一步求得圆心坐标与半径.【详解】设圆的方程为:x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=3,F=0,∴圆的方程为x2+y2﹣8x+6y=0,化为(x﹣4)2+(y+3)2=21,可得:圆心是(4,﹣3)、半径r=1.【点睛】本题主要考查圆的方程和性质,属于简单题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.20、(1)见解析;(2)见解析【解析】
(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《金字塔原理》读书笔记个人所感
- 2022年“安全生产月”宣传活动方案【4篇】
- 2021公司年终个人总结五篇
- 幼儿园教育实习调查报告汇编4篇
- 骄傲的初中满分作文素材700字
- 科学发展观提出的背景及形成与发展
- 生物学院食品安全-课件
- 全面保洁服务协议书(2篇)
- 儿童图书销售代理合同(2篇)
- 山西吕梁2025届高三上学期11月期中考试化学试卷试题及答案解析
- 中班听课记录15篇
- GB/T 8750-2022半导体封装用金基键合丝、带
- 体育科学研究方法学习通课后章节答案期末考试题库2023年
- 2023天津市和平区七年级上学期语文期末试卷及答案
- 校园艺术节比赛评分表
- 挖机租赁协议(通用6篇)
- 院内按病种分值付费(DIP)专题培训
- 有机磷中毒专家共识
- 2023-2024学年辽宁省调兵山市小学数学五年级上册期末高分通关试题
- 地方公务员考试:2022西藏真题及答案
- 电化学培优专题
评论
0/150
提交评论