版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,内角的对边分别为,若,则等于()A. B. C. D.2.直线过且在轴与轴上的截距相等,则的方程为()A. B.C.和 D.3.已知函数,下列结论不正确的是(
)A.函数的最小正周期为B.函数在区间内单调递减C.函数的图象关于轴对称D.把函数的图象向左平移个单位长度可得到的图象4.下列四个结论正确的是()A.两条直线都和同一个平面平行,则这两条直线平行B.两条直线没有公共点,则这两条直线平行C.两条直线都和第三条直线平行,则这两条直线平行D.两条直线都和第三条直线垂直,则这两条直线平行5.已知等比数列满足,,则()A. B. C. D.6.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.7.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.8.已知两个非零向量,满足,则()A. B.C. D.9.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.10.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.12.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.13.已知三棱锥,平面,,,,则三棱锥的侧面积__________.14.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.15.若向量,,且,则实数______.16.终边在轴上的角的集合是_____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.18.已知函数,若,且,,求满足条件的,.19.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.20.不等式的解集为______.21.已知函数.(1)求的单调递增区间;(2)求在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由题意变形,运用余弦定理,可得cosB,再由同角的平方关系,可得所求值.【详解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,则cosB,可得B<π,即有sinB.故选A.【点睛】本题考查余弦定理的运用,考查同角的平方关系,以及运算能力,属于中档题.2、B【解析】
对直线是否过原点分类讨论,若直线过原点满足题意,求出方程;若直线不过原点,在轴与轴上的截距相等,且不为0,设直线方程为将点代入,即可求解.【详解】若直线过原点方程为,在轴与轴上的截距均为0,满足题意;若直线过原点,依题意设方程为,代入方程无解.故选:B.【点睛】本题考查直线在上的截距关系,要注意过原点的直线在轴上的截距是轴上的截距的任意倍,属于基础题.3、D【解析】
利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.【详解】由题意,函数其最小正周期为,故选项A正确;函数在上为减函数,故选项B正确;函数为偶函数,关于轴对称,故选项C正确把函数的图象向左平移个单位长度可得,所以选项D不正确.故答案为D【点睛】本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.4、C【解析】
利用空间直线平面位置关系对每一个选项分析得解.【详解】A.两条直线都和同一个平面平行,则这两条直线平行、相交或异面,所以该选项错误;B.两条直线没有公共点,则这两条直线平行或异面,所以该选项错误;C.两条直线都和第三条直线平行,则这两条直线平行,是平行公理,所以该选项正确;D.两条直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以该选项错误.故选:C【点睛】本题主要考查直线平面的位置关系的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.5、C【解析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.6、A【解析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.7、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A8、C【解析】
根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【详解】由题,得,即,,则,所以.故选:C.【点睛】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.9、A【解析】
根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。10、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.12、【解析】
根据弧长公式即可求解.【详解】由弧长公式可得故答案为:【点睛】本题主要考查了弧长公式的应用,属于基础题.13、【解析】
根据题意将三棱锥放入对应长方体中,计算各个面的面积相加得到答案.【详解】三棱锥,平面,,,画出图像:易知:每个面都是直角三角形.【点睛】本题考查了三棱锥的侧面积,将三棱锥放入对应的长方体是解题的关键.14、2【解析】
去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.15、【解析】
根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.16、【解析】
由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解析】
(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【点睛】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.18、,【解析】
利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.19、证明见解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC内的两相交线,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC内两相交线,所以AD⊥面SBC.【点睛】本题考查了线面垂直的证明与性质,属于基础题.20、【解析】
根据一元二次不等式的解法直接求解即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国导尺行业投资前景及策略咨询研究报告
- 2024至2030年中国PVC胶骨机行业投资前景及策略咨询研究报告
- 2024年中国直充型毛球修剪器市场调查研究报告
- 2024年中国男装睡袍市场调查研究报告
- 2024至2030年烘干核桃果项目投资价值分析报告
- 2024年蓄光型自发光IMO标志项目可行性研究报告
- 融资机构委托合同三篇
- 红歌学习《我们是共产主义接班人》主题班会
- 病房巡视制度及流程
- 市政工程雨水管道验收方案
- 电大财务大数据分析编程作业2
- 叉车工安全技术交底书
- 市场营销职业规划生涯发展报告
- translated-(2024.V1)NCCN临床实践指南:心理痛苦的处理(中文版)
- 外国新闻传播史 课件 第十章 俄罗斯地区的新闻传播事业
- 《民用建筑项目节能评估技术导则》
- (2024年)《口腔医学美学》课件
- 七年级英语下册读写综合专项训练
- 门诊护患沟通技巧(简)
- 放射性物质的标志与标识
- 2024年传染病培训课件
评论
0/150
提交评论