




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果在一次实验中,测得x,y的四组数值分别是A1,3,B2,3.8,C3,5.2,D4,6,则A.y=x+1.9 B.C.y=0.95x+1.04 D.2.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.903.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形4.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,5.若直线与直线平行,则实数A.0 B.1 C. D.6.数列中,,则数列的极限值()A.等于0 B.等于1 C.等于0或1 D.不存在7.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.8.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.9.倾斜角为,在轴上的截距为的直线方程是A. B. C. D.10.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.已知,,两圆和只有一条公切线,则的最小值为________13.将二进制数110转化为十进制数的结果是_____________.14.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.15.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.16.已知,,与的夹角为钝角,则的取值范围是_____;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求实数的值并证明函数的单调性;(2)解关于不等式:.18.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.19.若关于的不等式对一切实数都成立,求实数的取值范围.20.已知为数列的前n项和,且.(1)求数列的通项公式;(2)若,求数列的前n项和.21.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
求出样本数据的中心(2.5,4.5),依次代入选项中的回归方程.【详解】∵x∴样本数据的中心为(2.5,4.5),将它依次代四个选项,只有B符合,∴y与x之间的回归直线方程是y=1.04x+1.9【点睛】本题的考点是回归直线经过样本点的中心,而不是考查利用最小二乘法求回归直线方程.2、C【解析】
根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.3、B【解析】
根据等差中项以及余弦定理即可.【详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【点睛】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.4、A【解析】
分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.5、B【解析】
根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.6、B【解析】
根据题意得到:时,,再计算即可.【详解】因为当时,.所以.故选:B【点睛】本题主要考查数列的极限,解题时要注意公式的选取和应用,属于中档题.7、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.8、A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.9、D【解析】试题分析:倾斜角,直线方程截距式考点:斜截式直线方程点评:直线斜率为,在y轴上的截距为,则直线方程为,求直线方程最终结果整理为一般式方程10、D【解析】
由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【点睛】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、9【解析】
两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【点睛】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.13、6【解析】
将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.14、【解析】
先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题15、1【解析】
根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题16、【解析】
与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2,证明见解析(2)【解析】
(1)由函数为奇函数,得,化简得,所以,.再转化函数为,由定义法证明单调性.(2)将可化为,构造函数,再由在上是单调递增函数求解.【详解】(1)根据题意,因为函数为奇函数,所以,即,即,即,化简得,所以.所以,证明:任取且,则因为,所以,,,,所以∴,所以在上单调递增;(2)可化为,设函数,由(1)可知,在上也是单调递增,所以,即,解得.【点睛】本题主要考查了函数的单调性和奇偶性的应用,还考查了运算求解的能力,属于中档题.18、(1);(2).【解析】
(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【点睛】本题考查正弦型函数的最小正周期、三角形面积的求解,涉及到正弦定理、余弦定理、三角形面积公式、两角和差正弦公式、二倍角公式、辅助角公式的应用,考查学生对于三角函数、三角恒等变换和解三角形知识的掌握.19、【解析】
对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.20、(1)(2)【解析】
(1)先根据和项与通项关系得项之间递推关系,再根据等比数列定义以及通项公式求结果,(2)根据错位相减法求结果.【详解】(1)因为,所以当时,,相减得,,当时,,因此数列为首项为,2为公比的等比数列,(2),所以,则2,两式相减得.【点睛】本题考查错位相减法求和以及由和项求通项,考查基本求解能力,属中档题.21、(1);(2)【解析】
(1)根据向量的数量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京市二手车买卖代理合同新版(合同版本)
- 2025办公室租赁合同协议书
- 2025二手房购房合同示范文本
- 人工智能应用 课件 项目1 认识人工智能
- 商业空间设计与装修施工规范
- 2025年个人与公司签订的劳动合同范本
- 竹厂股份合作协议
- 医学生整体护理
- 汽车维修行业智能化汽车维修设备与技术方案
- 眼科医学与视力保健作业指导书
- 水污染源在线监测系统COD、氨氮及总磷分析仪产生的废液处理规程
- 铁合金企业安全生产管理处罚细则
- 出车前自检自查检查记录表
- 2023年CATTI三级笔译综合能力附答案
- 发动机机械-01.1cm5a4g63维修手册
- 2022年抚顺特殊钢股份有限公司招聘笔试试题及答案解析
- 儿童抑郁量表CDI
- 幼儿数字1-100字帖练习
- 搅拌站安全培训试卷
- Q∕SY 02098-2018 施工作业用野营房
- 浙教版劳动五年级下册 项目三 任务三 环保小车我来造 教案
评论
0/150
提交评论