版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π2.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形3.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)4.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形5.在区间内任取一个实数,则此数大于2的概率为()A. B. C. D.6.在ΔABC中,内角A,B,C的对边分别为a,b,c.若3asinC=A.π6 B.π3 C.2π7.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.8.一组数据中的每一个数据都乘以3,再减去30,得到一组新数据,若求得新数据的平均数是3.6,方差是9.9,则原来数据的平均数和方差分别是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.19.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水10.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.某海域中有一个小岛(如图所示),其周围3.8海里内布满暗礁(3.8海里及以外无暗礁),一大型渔船从该海域的处出发由西向东直线航行,在处望见小岛位于北偏东75°,渔船继续航行8海里到达处,此时望见小岛位于北偏东60°,若渔船不改变航向继续前进,试问渔船有没有触礁的危险?答:______.(填写“有”、“无”、“无法判断”三者之一)12.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.13.在中,若,,,则________.14.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______.15.已知等差数列的前三项为,则此数列的通项公式为______16.已知x、y满足约束条件,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.18.已知.(1)求;(2)求的值.19.已知函数的最大值是1,其图像经过点(1)求的解析式;(2)已知且求的值。20.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.21.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【点睛】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.2、B【解析】
利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.3、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用4、A【解析】
由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【点睛】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】
根据几何概型长度型直接求解即可.【详解】根据几何概型可知,所求概率为:本题正确选项:【点睛】本题考查几何概型概率问题的求解,属于基础题.6、A【解析】
根据正弦定理asinA=csinC将题干等式化为3sinAsin【详解】∵3asinC=3ccosA,所以3sinAsin【点睛】本题考查运用正弦定理求三角形内角,属于基础题。7、A【解析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.8、A【解析】
根据新数据所得的均值与方差,结合数据分析中的公式,即可求得原来数据的平均数和方差.【详解】设原数据为则新数据为所以由题意可知,则,解得,故选:A.【点睛】本题考查了数据处理与简单应用,平均数与方差公式的简单应用,属于基础题.9、C【解析】
预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【点睛】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、D【解析】
由图象求得函数解析式的参数,再利用诱导公式将异名函数化为同名函数根据图象间平移方法求解.【详解】由图象可知,又,所以,又因为,所以,所以,又因为,又,所以所以又因为故选D.【点睛】本题考查由图象确定函数的解析式和正弦函数和余弦函数图象之间的平移,关键在于将异名函数化为同名函数,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、无【解析】
可过作的延长线的垂线,垂足为,结合角度关系可判断为等腰三角形,再通过的边角关系即可求解,判断与3.8的大小关系即可【详解】如图,过作的延长线的垂线,垂足为,在中,,,则,所以为等腰三角形。,又,所以,,所以渔船没有触礁的危险故答案为:无【点睛】本题考查三角函数在生活中的实际应用,属于基础题12、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.13、2;【解析】
利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.14、2【解析】
根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4,12,8.
本市共有城市数24,用分层抽样的方法从中抽取一个容量为6的样本,
每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.15、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.16、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.18、(1)(2)【解析】
(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【点睛】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1)(2)【解析】本题(1)属于基础问题,根据题意首先可求得A,再将点M代入即可求得解析式;对于(2)可先将函数f(x)的解析式化简,再带入,利用两角差的余弦公式可求解;(1)依题意知A=1,又图像经过点M∴,再由得即因此;(2),且,;20、(1)证明见解析;(2).【解析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外汇预收货款合同范例
- 种牛租赁合同范例
- 乡村居民个人借款合同范例
- 二手转让房屋买卖合同范例
- 正规送货合同范例
- 聘请兼职律师合同范例
- 吹填砂合同范例
- 注册地址合同范例
- 公司领导承揽工程合同范例
- 聘用司机劳务合同范例
- 三级医院医疗设备配置标准
- 合法离婚协议书(2篇)
- 水轮发电机组大修质量标准
- 项目主要技术方案计划表
- 汽车零部件开发质量管理课件
- 20m29.6m30.4m20m钢箱梁桥实例设计内容与表达
- 冀教版四年级上册英语Unit 4单元测试卷(含听力音频)
- 【真题】北京市西城区六年级语文第一学期期末试卷 2021-2022学年(有答案)
- VMWare Horizon7平台集成指南
- 口腔专科护理知识考核试题与答案
- 音响工作总结共3篇(剧院音响工作个人总结)
评论
0/150
提交评论