2023届甘肃省金昌市永昌县第四中学高一数学第二学期期末经典模拟试题含解析_第1页
2023届甘肃省金昌市永昌县第四中学高一数学第二学期期末经典模拟试题含解析_第2页
2023届甘肃省金昌市永昌县第四中学高一数学第二学期期末经典模拟试题含解析_第3页
2023届甘肃省金昌市永昌县第四中学高一数学第二学期期末经典模拟试题含解析_第4页
2023届甘肃省金昌市永昌县第四中学高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列an中,a1=1,aA.13 B.16 C.32 D.352.已知,那么()A. B. C. D.3.的弧度数是()A. B. C. D.4.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.155.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或6.将函数的图象向右平移个单位长度得到图像,则下列判断错误的是()A.函数的最小正周期是 B.图像关于直线对称C.函数在区间上单调递减 D.图像关于点对称7.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.98.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为()A.10 B.20 C.40 D.609.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个10.已知等比数列的前项和为,则下列一定成立的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.设,则的值是____.12.计算:______.13.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.14.已知锐角、满足,,则________.15.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________16.已知等比数列中,,,若数列满足,则数列的前项和=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个内角,,的对边分别为,,,函数,且当时,取最大值.(1)若关于的方程,有解,求实数的取值范围;(2)若,且,求的面积.18.已知.(1)求;(2)求的值.19.某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:1234546102322(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).参考公式与参考数据:.20.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.21.如图,三棱柱中,,D为AB上一点,且平面.(1)求证:;(2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,,,求三楼柱的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

直接利用等差数列的前n项和公式求解.【详解】数列an的前5项和为5故选:D【点睛】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.2、A【解析】依题意有,故3、B【解析】

由角度与弧度的关系转化.【详解】-150.故选:B.【点睛】本题考查角度与弧度的互化,解题关键是掌握关系式:.4、C【解析】

抽取比例为,,抽取数量为20,故选C.5、C【解析】

直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.6、C【解析】

根据三角函数的图象平移关系求出的解析式,结合函数的单调性,对称性分别进行判断即可.【详解】由题意,将函数的图象向右平移个单位长度,可得,对于,函数的最小正周期为,所以该选项是正确的;对于,令,则为最大值,函数图象关于直线,对称是正确的;对于中,,则,,则函数在区间上先减后增,不正确;对于中,令,则,图象关于点对称是正确的,故选.【点睛】本题主要考查命题的真假判断,涉及三角函数的单调性,对称性,求出解析式是解决本题的关键.7、D【解析】

试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项8、C【解析】

由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数.【详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为:,则这1000名学生中成绩在130分以上的人数为人.故选:.【点睛】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.9、B【解析】

根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.10、C【解析】

设等比数列的公比为q,利用通项公式与求和公式即可判断出结论.【详解】设等比数列的公比为q,若,则,则,而与0的大小关系不确定.若,则,则与同号,则与0的大小关系不确定.故选:C【点睛】本题主要考查了等比数列的通项公式与求和公式及其性质、不等式的性质与解法,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.12、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.13、【解析】

根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.14、.【解析】试题分析:由题意,所以.考点:三角函数运算.15、1【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-2点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.16、【解析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用两角和差的正弦公式整理可得:,再利用已知可得:(),结合已知可得:,求得:时,,问题得解.(2)利用正弦定理可得:,结合可得:,对边利用余弦定理可得:,结合已知整理得:,再利用三角形面积公式计算得解.【详解】解:(1).因为在处取得最大值,所以,,即.因为,所以,所以.因为,所以所以,因为关于的方程有解,所以的取值范围为.(2)因为,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.18、(1)(2)【解析】

(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【点睛】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1)(2)预测第六天的参加抽奖活动的人数为29.【解析】

(1)根据表中的数据,利用公式,分别求得的值,即可得到回归直线方程;(2)将代入回归直线方程,求得,即可作出判断,得到结论.【详解】(1)根据表中的数据,可得,,则,,又由,故所求回归直线方程为.(2)将代入中,求得,故预测第六天的参加抽奖活动的人数为29.【点睛】本题主要考查了回归直线方程的求解,以及回归直线方程的应用,其中解答中利用公式准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)(2)【解析】

(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.21、(1)见详解;(2)【解析】

(1)连接交于点,连接,利用线面平行的性质定理可得,从而可得为的中点,进而可证出(2)利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论