




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.7 B.12 C.17 D.342.己知向量,,,则“”是“”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.若正数满足,则的最小值为A. B.C. D.34.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.5.若点在圆外,则a的取值范围是()A. B. C. D.或6.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.647.函数y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-18.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形9.圆心为且过原点的圆的一般方程是A. B.C. D.10.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.123二、填空题:本大题共6小题,每小题5分,共30分。11.已知sin=,则cos=________.12.函数,的反函数为__________.13.在数列中,若,(),则________14.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.15.已知x、y、z∈R,且,则的最小值为.16.函数f(x)=2cos(x)﹣1的对称轴为_____,最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图18.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.19.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.20.已知,,且.(1)求函数的最小正周期;(2)若用和分别表示函数W的最大值和最小值.当时,求的值.21.如图,在平面四边形ABCD中,,,,.(1)若点E为边CD上的动点,求的最小值;(2)若,,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】第一次循环:a=2,s=2,k=1;第二次循环:a=2,s=6,k=2;第三次循环:a=5,s=17,k=3>2;结束循环,输出s=17,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2、A【解析】
先由题意,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】因为,,所以,若,则,所以;若,则,所以;综上,“”是“”的充要条件.故选:A【点睛】本题主要考查向量共线的坐标表示,以及命题的充要条件的判定,熟记充分条件与必要条件的概念,以及向量共线的坐标表示即可,属于常考题型.3、A【解析】
由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积5、C【解析】
先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内6、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.7、B【解析】
根据余弦函数有界性确定最值.【详解】因为-1≤cosx≤1,所以【点睛】本题考查余弦函数有界性以及函数最值,考查基本求解能力,属基本题.8、C【解析】
由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【点睛】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.9、D【解析】
根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。10、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.12、【解析】
将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.13、【解析】
由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、或【解析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.15、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式16、﹣3【解析】
利用余弦函数的图象的对称性,余弦函数的最值,求得结论.【详解】解:对于函数,令,求得,根据余弦函数的值域可得函数的最小值为,故答案为:;.【点睛】本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【点睛】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.18、(1)证明见解析;(2)证明见解析.【解析】
(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥平面PDC
即可.【详解】(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点,正方形对角线互相平分,∴F为AC中点,又E是PC中点,在△CPA中,EF∥PA,且PA⊆平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD⊂平面PDC,∴平面PAD⊥平面PDC【点睛】本题主要考查空间直线与平面平行的判定定理,以及平面与平面垂直的判定定理,要求熟练掌握相关的判定定理.19、(1)(2)【解析】
(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.20、(1);(2).【解析】
(1)根据向量数量积的计算公式和三角恒等变换公式可将化简为,进而求得函数的最小正周期;(2)由可求得的范围,进而可求得的最大值和最小值,最后得解.【详解】(1)∴;(2),,,∴当时,,当时,,∴.【点睛】本题考查向量数量积的计算公式和三角恒等变换公式,考查三角函数的单调性和周期性,考查逻辑思维能力和计算能力,属于常考题.21、(1);(2)【解析】
(1)建立平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腰椎术后康复治疗
- 2025至2031年中国水晶装饰类行业投资前景及策略咨询研究报告
- 氢能燃料电池设计行业跨境出海项目商业计划书
- 2025至2031年中国新活氧青春橄榄晚霜行业投资前景及策略咨询研究报告
- 2025至2031年中国提花地垫行业投资前景及策略咨询研究报告
- 2025至2031年中国天花嵌入式空调行业投资前景及策略咨询研究报告
- 民俗文化AR应用行业深度调研及发展项目商业计划书
- 校园运动会行业深度调研及发展项目商业计划书
- 大数据与人工智能在文化传播中的应用企业制定与实施新质生产力项目商业计划书
- 2025至2031年中国双U灯管行业投资前景及策略咨询研究报告
- 保赔协会–历史,承保内容和组织
- 水质监测系统建设方案
- 建筑物的防雷及安全用电电子教案
- 中国近现代史社会实践报告-2000字
- 小学四年级英语下册期末的复习计划(精选6篇)
- NBT-31084-2016风力发电场项目建设工程验收规程(A.监理基本用表)
- 国电智深DCS系统培训PPT课件
- 混凝土结构及砌体结构课程设计(共18页)
- 高层建筑“一栋一册”消防安全档案
- 柳洲学校学生仪容仪表日常检查记录表
- 铣床数控课程设计(共39页)
评论
0/150
提交评论