2022-2023学年浙江省杭州市第二中学数学高一下期末经典试题含解析_第1页
2022-2023学年浙江省杭州市第二中学数学高一下期末经典试题含解析_第2页
2022-2023学年浙江省杭州市第二中学数学高一下期末经典试题含解析_第3页
2022-2023学年浙江省杭州市第二中学数学高一下期末经典试题含解析_第4页
2022-2023学年浙江省杭州市第二中学数学高一下期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列的前n项的和,那么这个数列的通项公式为()A. B.C. D.2.若,,,则的最小值为()A. B. C. D.3.已知两个正数a,b满足,则的最小值是(

)A.2 B.3 C.4 D.54.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.5.已知数列的前项和为,且,若对任意,都有成立,则实数的取值范围是()A. B. C. D.6.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④7.设的内角所对边的长分别为,若,则角=()A. B.C. D.8.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]9.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或710.设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是12.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.13.某几何体的三视图如图所示,则该几何体的体积为__________.14.不等式的解集为______.15.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.16.设等比数列的公比,前项和为,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.18.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.19.从含有两件正品和一件次品的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求:(1)一切可能的结果组成的基本事件空间.(2)取出的两件产品中恰有一件次品的概率20.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.21.已知且,比较与的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:根据前n项和与其通项公式的关系式,an=当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2•3n-1.当n=1时,a1=1,不满足上式;所以an=,故答案为an=,选D.考点:本题主要考查数列的求和公式,解题时要根据实际情况注意公式的灵活运用,属于中档题点评:解决该试题的关键是借助公式an=,将前n项和与其通项公式联系起来得到其通项公式的值.2、B【解析】

根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解析】

根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.4、D【解析】

利用向量的数量积即可求解.【详解】解析:.故选:D【点睛】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.5、B【解析】即对任意都成立,当时,当时,当时,归纳得:故选点睛:根据已知条件运用分组求和法不难计算出数列的前项和为,为求的取值范围则根据为奇数和为偶数两种情况进行分类讨论,求得最后的结果6、D【解析】

取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.7、B【解析】

试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.8、C【解析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.9、A【解析】

根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.10、B【解析】由向量平行的性质,有2∶4=x∶6,解得x=3,选B考点:本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.12、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.13、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.14、【解析】

根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.15、192【解析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为16、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在(3)1【解析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分18、(1),(2)【解析】

(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.19、(1)和;(2)【解析】

(1)注意先后顺序以及是不放回的抽取;(2)在所有可能的事件中寻找符合要求的事件,然后利用古典概型概率计算公式求解即可.【详解】(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即和其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品(2)用A表示“取出的两种中,恰好有一件次品”这一事件,则∴事件A由4个基本事件组成,因而,=.【点睛】本题考查挂古典概型的基本概率计算,难度较易.对于放回或不放回的问题,一定要注意区分其中的不同.20、(1);(2);(3)的最大值为1999,此时公差为.【解析】

(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论