2022-2023学年上海市松江区松江二中数学高一下期末预测试题含解析_第1页
2022-2023学年上海市松江区松江二中数学高一下期末预测试题含解析_第2页
2022-2023学年上海市松江区松江二中数学高一下期末预测试题含解析_第3页
2022-2023学年上海市松江区松江二中数学高一下期末预测试题含解析_第4页
2022-2023学年上海市松江区松江二中数学高一下期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非零实数a,b满足,则下列不等关系一定成立的是()A. B. C. D.2.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.4.设△ABC的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=()A. B.或 C. D.或5.已知向量,满足,,,则与的夹角为()A. B. C. D.6.若数列满足,,则()A. B. C.18 D.207.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.8.已知函数()的最小正周期为,则该函数的图象()A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称9.如图,在正方体中,,分别是中点,则异面直线与所成角大小为().A. B. C. D.10.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.12.设不等式组所表示的平面区域为D.若直线与D有公共点,则实数a的取值范围是_____________.13.设等差数列的前项和为,若,,则的最小值为______.14.关于的方程只有一个实数根,则实数_____.15.已知向量,,且,则_______.16.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,,平面平面,,为的中点.(1)求证://平面;(2)求点到面的距离(3)求二面角平面角的正弦值18.如图,在四棱锥中,底面为梯形,,平面平面是的中点.(1)求证:平面;(2)若,证明:19.已知,且与的夹角.(1)求的值;(2)记与的夹角为,求的值.20.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、.21.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据不等式的基本性质,一一进行判断即可得出正确结果.【详解】A.,取,显然不成立,所以该选项错误;B.,取,显然不成立,所以该选项错误;C.,取,显然不成立,所以该选项错误;D.,由已知且,所以,即.所以该选项正确.故选:.【点睛】本题考查不等式的基本性质,属于容易题.2、C【解析】

在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.3、C【解析】

根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.4、A【解析】

由已知利用正弦定理可求的值,利用大边对大角可求为锐角,利用特殊角的三角函数值,即可得解.【详解】由题意知,由正弦定理,可得==,又因为,可得B为锐角,所以.故选A.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.5、B【解析】

将变形解出夹角的余弦值,从而求出与的夹角.【详解】由得,即又因为,所以,所以,故选B.【点睛】本题考查向量的夹角,属于简单题.6、A【解析】

首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【点睛】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.7、C【解析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.8、D【解析】∵函数()的最小正周期为,∴,,令,,,,显然A,B错误;令,可得:,,显然时,D正确故选D9、C【解析】

通过中位线定理可以得到在正方体中,可以得到所以这样找到异面直线与所成角,通过计算求解.【详解】分别是中点,所以有而,因此异面直线与所成角为在正方体中,,所以,故本题选C.【点睛】本题考查了异面直线所成的角.10、A【解析】

由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、0.72【解析】

根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.12、【解析】

画出不等式组所表示的平面区域,直线过定点,根据图像确定直线斜率的取值范围.【详解】画出不等式组所表示的平面区域如下图所示,直线过定点,由图可知,而,所以.故填:.【点睛】本小题主要考查不等式表示区域的画法,考查直线过定点问题,考查直线斜率的取值范围的求法,属于基础题.13、【解析】

用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.14、【解析】

首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。15、-2或3【解析】

用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.16、.【解析】

根据等积法可得∴三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见详解;(2);(3)【解析】

(1)通过取中点,利用中位线定理可得四变形为平行四边形,然后利用线面平行的判定定理,可得结果.(2)根据,可得平面,可得结果.(3)作,作,可得二面角平面角为,然后计算,可得结果.【详解】(1)取中点,连接,如图由为的中点,所以//且又,且,所以//且,故//且,所以四变形为平行四边形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以为正三角形,所以则平面所以平面,且所以点到面的距离即(3)作交于点,作交于点,连接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角为,又为等腰直角三角形所以,所以所以又二面角平面角为故所以二面角平面角的正弦值为【点睛】本题考查了线面平行的判定定理,还考查了点面距和面面角的求法,第(3)中难点在于找到二面角的平面角,掌握定义以及综合线面,面面的位置关系,细心计算,属中档题.18、(1)证明见解析,(2)证明见解析【解析】

(1)首先取的中点,连接,.根据已知条件和三角形中位线定理得到,又因为四边形为平行四边形,所以,再利用线面平行的判定即可证明.(2)首先连接,利用线面垂直的判定证明平面,再根据线面垂直的性质即可证明.【详解】(1)取的中点,连接,.因为分别为,的中点,所以.又因为,所以.所以四边形为平行四边形,.又因为平面,所以平面.(2)连接,因为,是的中点,所以.因为平面平面,,所以平面.又因为平面,所以.平面.平面,所以.【点睛】本题第一问考查线面平行的证明,第二问考查利用线面垂直的性质证明线线垂直,属于中档题.19、(1);(2).【解析】

(1)求向量的模先求向量的平方;(2)由向量的夹角公式可以求得.【详解】(1)根据题意可得:故(2),则故.【点睛】本题考查向量的数量积运算,求向量的模和夹角,属于基础题.20、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).21、(1)见解析.(2)见解析.【解析】

(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论