版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年山西省忻州市腰庄乡联校高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列有关命题说法正确的是A.“”是函数为偶函数的充分不必要条件”B.“是“”成立的必要不充分条件C.命题“,使得”的否定是:“,均有”D.命题“若则”的逆否命题为真命题参考答案:D略2.如图①,一个圆锥形容器的高为,内装有一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为(如图②),则图①中的水面高度为A.
B.
C.
D.参考答案:D略3.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A. B. C.3 D.5参考答案:A【考点】双曲线的简单性质;抛物线的简单性质.【分析】确定抛物线y2=12x的焦点坐标,从而可得双曲线的一条渐近线方程,利用点到直线的距离公式,即可求双曲线的焦点到其渐近线的距离.【解答】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.4.正方体的表面积与其外接球表面积的比为(
).A. B. C. D.参考答案:B设正方体的棱长为,则正方体的表面积,由正方体的体对角线就是其外接球的直径可知:,即,所以外接球的表面积:,故正方体的表面积与其外接球的表面积的比为:.故选.5.已知不等式的解集为,则不等式的解为(
)A.
B.
C.
D.参考答案:A略6.经过两点(3,9)、(﹣1,1)的直线在x轴上的截距为(
)A. B. C. D.2参考答案:A【考点】直线的截距式方程;直线的两点式方程.【专题】计算题.【分析】先由两点式求方程,再令y=0,我们就可以求出经过两点(3,9)、(﹣1,1)的直线在x轴上的截距【解答】解:由两点式可得:即2x﹣y+3=0令y=0,可得x=∴经过两点(3,9)、(﹣1,1)的直线在x轴上的截距为故选A.【点评】直线在x轴上的截距,就是直线与x轴交点的横坐标,它不同于距离,可以是正数、负数与0.7.一束光线从点出发,经x轴反射到圆上的最短路径长为(
)
A.4
B.5
C.
D.参考答案:A8.已知,(0,π),则=(
)
A1
B
C
D1参考答案:A9.已知抛物线,焦点为,平面上一定点,满足,过A作直线,过原点作的垂线,垂足为Q,则Q的轨迹方程为(
)A.
B.
C.
D.参考答案:D10.设,则(
)A.0.16
B.0.32
C.0.84
D.0.64参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=ln(2x-1),则f′(x)=
▲
.参考答案:略12.若关于的不等式成立的一个充分非必要条件是“”,则实数的取值范围是
.参考答案:13.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)=________. 参考答案:14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,如下表所示.
a1a2a3a4a5a6a7a8a9a10a11a12x1y1x2y2x3y3x4y4x5y5x6y6按如此规律下去,请归纳,则a+a+a等于 . 参考答案:略15.设复数z满足(i为虚数单位),则z的模为________.参考答案:1.【分析】根据复数的运算可得,再利用模的计算公式,即可求解.【详解】由题意,复数满足,则,则的模为.【点睛】本题主要考查了复数的运算以及复数模的计算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查了运算与求解能力,属于基础题.16.下列各数
、
、
、中最小的数是___参考答案:17.已知函数f(x)=x3﹣ax2+1在区间[0,2]内单调递减,则实数a的取值范围是.参考答案:[3,+∞)【考点】利用导数研究函数的单调性.【分析】由函数f(x)=x3﹣ax2+1在[0,2]内单调递减转化成f'(x)≤0在[0,2]内恒成立,利用参数分离法即可求出a的范围.【解答】解:∵函数f(x)=x3﹣ax2+1在[0,2]内单调递减,∴f'(x)=3x2﹣2ax≤0在[0,2]内恒成立.即a≥x在[0,2]内恒成立.∵t=x在[0,2]上的最大值为×2=3,∴故答案为:a≥3.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.(2)求焦点在y轴上,焦距是4,且经过点M(3,2)的椭圆的标准方程.参考答案:【考点】椭圆的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆方程为,可得a,b,c,即可得出;(2)利用椭圆的定义可得:a,即可得出b2=a2﹣c2.【解答】解:(1)∵椭圆方程为,∴a=2,b=1,c==,因此,椭圆的长轴的长和短轴的长分别为2a=4,2b=2,离心率e==,两个焦点分别为F1(﹣,0),F2(,0),椭圆的四个顶点是A1(﹣2,0),A2(2,0),B1(0,﹣1),B2(0,1).(2)由焦距是4可得c=2,且焦点坐标为(0,﹣2),(0,2).由椭圆的定义知:2a=+=8,∴a=4,b2=a2﹣c2=16﹣4=12.又焦点在y轴上,∴椭圆的标准方程为.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.19.(本题满分12分)已知向量.(Ⅰ)求的最小正周期;(Ⅱ)若为锐角,且,求的值参考答案:(1)……………2分…………3分.
…………4分所以的最小正周期为.……………6分(2)∵,
∴.
∴.
……8分
∵为锐角,即,
∴.
∴.
……10分
∴.
……12分20.已知x、y满足约束条件.(1)作出不等式组表示的平面区域;(用阴影表示)(2)求目标函数的最小值.参考答案:(1)见解析;(2).【分析】(1)先画四条直线,再利用一元二次不等式表示平面区域的规律,确定可行域,画成阴影即可;(2)将目标函数的最小值看成直线在轴上截距的最大值,从可行域中找到最优解,进而求得目标函数的最小值.【详解】(1)可行域如图所示:(2)易得点,当直线过点时,直线在轴上截距达到最大,此时,取得最小值,所以.【点睛】本题考查线性规划,考查数形结合思想的运用,求解时注意利用直线在轴上截距的最大值求得目标函数的最小值,考查基本运算求解能力.21.已知直线与,则当为何值时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁现代服务职业技术学院《生物学教学艺术与教学设计》2023-2024学年第一学期期末试卷
- 兰州工商学院《半导体器件制造及测试技术》2023-2024学年第一学期期末试卷
- 吉林艺术学院《结构稳定》2023-2024学年第一学期期末试卷
- 湖南税务高等专科学校《风景区规划与设计》2023-2024学年第一学期期末试卷
- 湖南电子科技职业学院《城市修建性详细规划》2023-2024学年第一学期期末试卷
- 黑龙江生态工程职业学院《园林植物生物技术》2023-2024学年第一学期期末试卷
- 重庆艺术工程职业学院《影视动画制作》2023-2024学年第一学期期末试卷
- 重庆机电职业技术大学《机器学习与模式识别II(双语)》2023-2024学年第一学期期末试卷
- 中央司法警官学院《建筑空间生活》2023-2024学年第一学期期末试卷
- 浙江农林大学《社区管理与服务》2023-2024学年第一学期期末试卷
- GB/T 44769-2024能源互联网数据平台技术规范
- 吸氧术课件教学课件
- 八年级数学家长会课件
- 光伏发电项目试验检测计划
- 民航概论5套模拟试卷考试题带答案
- 2024届中国电建地产校园招聘网申平台高频500题难、易错点模拟试题附带答案详解
- COCA20000词汇音标版表格
- 沪教版七年级数学上册专题06图形的运动(原卷版+解析)
- JTG-T-F20-2015公路路面基层施工技术细则
- 光伏发电站集中监控系统通信及数据标准
- 建筑垃圾减排及资源化处置措施
评论
0/150
提交评论