《化工应用数学》_第1页
《化工应用数学》_第2页
《化工应用数学》_第3页
《化工应用数学》_第4页
《化工应用数学》_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化工應用數學授課教師:郭修伯Lecture6FunctionsanddefiniteintegralsVectors编辑课件Chapter5FunctionsanddefiniteintegralsTherearemanyfunctionsarisinginengineeringwhichcannotbeintegratedanalyticallyintermsofelementaryfunctions.Thevaluesofmanyintegralshavebeentabulated,muchnumericalworkcanbeavoidediftheintegraltobeevaluatedcanbealteredtoaformthatistabulated.Ref.pp.153Wearegoingtostudysomeofthesespecialfunctions…..编辑课件SpecialfunctionsFunctionsDetermineafunctionalrelationshipbetweentwoormorevariablesWehavestudiedmanyelementaryfunctionssuchaspolynomials,powers,logarithms,exponentials,trigonometricandhyperbolicfunctions.FourkindsofBesselfunctionsareusefulforexpressingthesolutionsofaparticularclassofdifferentialequations.Legendrepolynomialsaresolutionsofagroupofdifferentialequations.Learnsomemorenow….编辑课件TheerrorfunctionItoccursinthetheoryofprobability,distributionofresidencetimes,conductionofheat,anddiffusionmatter:0xzerfxz:dummyvariableProofinnextslide编辑课件xandyaretwoindependentCartesiancoordinatesinpolarcoordinatesErrorbetweenthevolumedeterminedbyx-yandr-Thevolumeofhasabaseareawhichislessthan1/2R2andamaximumheightofe-R2

编辑课件MoreabouterrorfunctionDifferentiationoftheerrorfunction:Integrationoftheerrorfunction:Theaboveequationistabulatedunderthesymbol“ierfx”with(Therefore,ierf0=0)Anotherrelatedfunctionisthecomplementaryerrorfunction“erfcx”编辑课件Thegammafunctionforpositivevaluesofn.tisadummyvariablesincethevalueofthedefiniteintegralisindependentoft.(N.B.,ifniszerooranegativeinteger,thegammafunctionbecomesinfinite.)repeatThegammafunctionisthusageneralizedfactorial,forpositiveintegervaluesofn,thegammafunctioncanbereplacedbyafactorial.(Fig.5.3pp.147)编辑课件MoreaboutthegammafunctionEvaluate编辑课件Chapter7VectoranalysisIthasbeenshownthatacomplexnumberconsistedofarealpartandanimaginarypart.Onesymbolwasusedtorepresentacombinationoftwoothersymbols.Itismuchquickertomanipulateasinglesymbolthanthecorrespondingelementaryoperationsontheseparatevariables.Thisistheoriginalideaofvector.Anynumberofvariablescanbegroupedintoasinglesymbolintwoways:(1)Matrices(2)TensorsTheprincipaldifferencebetweentensorsandmatricesisthelabellingandorderingofthemanydistinctparts.编辑课件TensorsGeneralizedaszmAtensoroffirstranksinceonesuffixmisneededtospecifyit.Thenotationofatensorcanbefurthergeneralizedbyusingmorethanonesubscript,thuszmnisatensorofsecondrank(i.e.m,n).Thesymbolismforthegeneraltensorconsistsofamainsymbolsuchaszwithanynumberofassociatedindices.Eachindexisallowedtotakeanyintegervalueuptothechosendimensionsofthesystem.Thenumberofindicesassociatedwiththetensoristhe“rank”ofthetensor.编辑课件Tensorsofzerorank(atensorhasnoindex)Itconsistsofonequantityindependentofthenumberofdimensionsofthesystem.Thevalueofthisquantityisindependentofthecomplexityofthesystemanditpossessesmagnitudeandiscalleda“scalar”.Examples:energy,time,density,mass,specificheat,thermalconductivity,etc.scalarpoint:temperature,concentrationandpressurewhichareallsignedbyanumberwhichmayvarywithpositionbutnotdependupondirection.编辑课件Tensorsoffirstrank(atensorhasasingleindex)Thetensoroffirstrankisalternativelynamesa“vector”.Itconsistsofasmanyelementsasthenumberofdimensionsofthesystem.Forpracticalpurposes,thisnumberisthreeandthetensorhasthreeelementsarenormallycalledcomponents.Vectorshavebothmagnitudeanddirection.Examples:force,velocity,momentum,angularvelocity,etc.编辑课件Tensorsofsecondrank(atensorhastwoindices)Ithasamagnitudeandtwodirectionsassociatedwithit.Theonetensorofsecondrankwhichoccursfrequentlyinengineeringisthestresstensor.Inthreedimensions,thestresstensorconsistsofninequantitieswhichcanbearrangedinamatrixform:编辑课件ThephysicalinterpretationofthestresstensorxzypxxxyxzThefirstsubscriptdenotestheplaneandthesecondsubscriptdenotesthedirectionoftheforce.xyisreadas“theshearforceonthexfacingplaneactingintheydirection”.编辑课件GeometricalapplicationsIfAandBaretwopositionvectors,findtheequationofthestraightlinepassingthroughtheendpointsofAandB.ABC编辑课件ApplicationofvectormethodforstagewiseprocessesInanystagewiseprocess,thereismorethanonepropertytobeconservedandforthepurposeofthisexample,itwillbeassumedthatthethreeproperties,enthalpy(H),totalmassflow(M)andmassflowofonecomponent(C)areconserved.Insteadofconsideringthreeseparatescalarbalances,onevectorbalancecanbetakenbyusingasetofcartesiancoordinatesinthefollowingmanner:UsingxtomeasureM,ytomeasureHandztomeasureCAnyprocessstreamcanberepresentedbyavector:MHCAsecondstreamcanberepresentedby:编辑课件Usingvectoraddition,Thus,ORwithrepresentsofthesumofthetwostreamsmustbeaconstantvectorforthethreepropertiestobeconservedwithinthesystem.Toperformacalculation,wheneitherofthestreamsOMorONisdetermined,theotherisobtainedbysubtractionfromtheconstantOR.Example:whenx=1,Ponchon-Savaritmethod(enthalpy-concentrationdiagram)xyzMRNBAPTheconstantlineORcrosstheplanex=1atpointPOpointAis:pointBis:pointPis:编辑课件MultiplicationofvectorsTwodifferentinteractions(what’sthedifference?)Scalarordotproduct:thecalculationgivingtheworkdonebyaforceduringadisplacementworkandhenceenergyarescalarquantitieswhicharisefromthemultiplicationoftwovectorsifA·B=0ThevectorAiszeroThevectorBiszero=90°AB编辑课件Vectororcrossproduct:nistheunitvectoralongthenormaltotheplanecontainingAandBanditspositivedirectionisdeterminedastheright-handscrewrulethemagnitudeofthevectorproductofAandBisequaltotheareaoftheparallelogramformedbyAandBifthereisaforceFactingatapointPwithpositionvectorrrelativetoanoriginO,themomentofaforceFaboutOisdefinedby:ifAB=0ThevectorAiszeroThevectorBiszero=0°AB编辑课件Commutativelaw:Distributionlaw:Associativelaw:编辑课件UnitvectorrelationshipsItisfrequentlyusefultoresolvevectorsintocomponentsalongtheaxialdirectionsintermsoftheunitvectorsi,j,andk.编辑课件ScalartripleproductThemagnitudeofisthevolumeoftheparallelepipedwithedgesparalleltoA,B,andC.ABCAB编辑课件VectortripleproductThevectorisperpendiculartotheplaneofAandB.WhenthefurthervectorproductwithCistaken,theresultingvectormustbeperpendiculartoandhenceintheplaneofAandB:ABCABwheremandnarescalarconstantstobedetermined.SincethisequationisvalidforanyvectorsA,B,andCLetA=i,B=C=j:编辑课件DifferentiationofvectorsIfavectorrisafunctionofascalarvariablet,thenwhentvariesbyanincrementt,rwillvarybyanincrementr.risavariableassociatedwithrbutitneedsnothaveeitherthesamemagnitudeofdirectionasr:编辑课件Astvaries,theendpointofthepositionvectorrwilltraceoutacurveinspace.Takingsasavariablemeasuringlengthalongthiscurve,thedifferentiationprocesscanbeperformedwithrespecttosthus:isaunitvectorinthedirectionofthetangenttothecurveisperpendiculartothetangent.Thedirectionofisthenormaltothecurve,andthetwovectorsdefinedasthetangentandnormaldefinewhatiscalledthe“osculatingplane”ofthecurve.编辑课件Temperatureisascalarquantitywhichcandependingeneraluponthreecoordinatesdefiningpositionandafourthindependentvariabletime.isa“partialderivative”.isthetemperaturegradientinthexdirectionandisavectorquantity.isascalarrateofchange.Partialdifferentiationofvectors编辑课件Adependentvariablesuchastemperature,havingtheseproperties,iscalleda“scalarpointfunction”andthesystemofvariablesisfrequentlycalleda“scalarfield”.Otherexamplesareconcentrationandpressure.Thereareotherdependentvariableswhicharevectorialinnature,andvarywithposition.Theseare“vectorpointfunctions”andtheyconstitute“vectorfield”.Examplesarevelocity,heatflowrate,andmasstransferrate.Scalarfieldandvectorfield编辑课件Hamilton’soperatorIthasbeenshownthatthethreepartialderivativesofthetemperaturewerevectorgradients.Ifthesethreevectorcomponentsareaddedtogether,thereresultsasinglevectorgradient:whichdefinestheoperatorfordeterminingthecompletevectorgradientofascalarpointfunction.Theoperatorispronounced“del”or“nabla”.ThevectorTisoftenwritten“gradT”forobviousreasons.canoperateuponanyscalarquantityandyieldavectorgradient.應用於scalar

的偏微编辑课件MoreabouttheHamilton’soperator...(vector)·(vector)ButTisthevectorequilvalentofthegeneralizedgradient

编辑课件Physicalmeaningof

T:Avariablepositionvectorrtodescribeanisothermalsurface:Sincedrliesontheisothermalplane…andThus,Tmustbeperpendiculartodr.Sincedrliesinanydirectionontheplane,Tmustbeperpendiculartothetangentplaneatr.ifA·B=0ThevectorAiszeroThevectorBiszero=90°drTTisavectorinthedirectionofthemostrapidchangeofT,anditsmagnitudeisequaltothisrateofchange.编辑课件Theoperatorisofvectorform,ascalarproductcanbeobtainedas:應用於vector

的偏微applicationTheequationofcontinuity:whereisthedensityanduisthevelocityvector.Output-input:thenetrateofmassflowfromunitvolumeAisthenetfluxofAperunitvolumeatthepointconsidered,countingvectorsintothevolumeasnegative,andvectorsoutofthevolumeaspositive.编辑课件AinAoutThefluxleavingtheoneendmustexceedthefluxenteringattheotherend.Thetubularelementis“divergent”inthedirectionofflow.Therefore,theoperatorisfrequentlycalledthe“divergence”:Divergenceofavector编辑课件Anotherformofthevectorproduct:isthe“curl”ofavector;Whatisitsphysicalmeaning?Assumeatwo-dimensionalfluidelementuvxyOABRegardedastheangularvelocityofOA,direction:kThus,theangularvelocityofOAis;similarily,theangularvelocityofOBis编辑课件Theangularvelocityuofthefluidelementistheaverageofthetwoangularvelocities:uvxyOABThisvalueiscalledthe“vorticity”ofthefluidelement,whichistwicetheangularvelocityofthefluidelement.Thisisthereasonwhyitiscalledthe“curl”operator.

编辑课件Wehavedealtwiththedifferentiationofvectors.Wearegoingtoreviewtheintegrationofvectors.编辑课件VectorintegrationLinearintegralsVectorareaandsurfaceintegralsVolumeintegrals编辑课件AnarbitrarypathofintegrationcanbespecifiedbydefiningavariablepositionvectorrsuchthatitsendpointsweepsoutthecurvebetweenPandQrPQdrAvectorA

canbeintegratedbetweentwofixedpointsalongthecurver:ScalarproductIftheintegrationdependsonPandQbutnotuponthepathr:ifA·B=0ThevectorAiszeroThevectorBiszero=90°编辑课件IfavectorfieldAcanbeexpressedasthegradientofascalarfield,thelineintegralofthevectorAbetweenanytwopointsPandQisindependentofthepathtaken.Ifisasingle-valuedfunction:and假如與從P到Q的路徑無關,則有兩個性質:Example:编辑课件Ifthevectorfieldisaforcefieldandaparticleatapointrexperiencesaforcef,thentheworkdoneinmovingtheparticleadistancerfromrisdefinedasthedisplacementtimesthecomponentofforceopposingthedisplacement:ThetotalworkdoneinmovingtheparticlefromPtoQisthesumoftheincrementsalongthepath.Astheincrementstendstozero:Whenthisworkdoneisindependentofthepath,theforcefieldis“conservative”.Suchaforcefieldcanberepresentedbythegradientofascalarfunction:Work,forceanddisplacementWhenascalarpointfunctionisusedtorepresentavectorfield,itiscalleda“potential”function:gravitationalpotentialfunction(potentialenergy)……………….gravitationalforcefieldelectricpotentialfunction………..electrostaticforcefieldmagneticpotentialfunction……….magneticforcefield编辑课件Surface:avectorbyreferecetoitsboundaryarea:themaximumprojectedareaoftheelementdirection:normaltothisplaneofprojection(right-handscrewrule)Thesurfaceintegralisthen:IfAisaforcefield,thesurfaceintegralgivesthetotalforaceactingonthesurface.IfAisthevelocityvector,thesurfaceintegralgivesthenetvolumetricflowacrossthesurface.编辑课件Volume:ascalarbyreferecetoitsboundaryABCBoththeelementsoflength(dr)andsurface(dS)arevectors,buttheelementofvolume(d)isascalarquantity.Thereisnomultiplicationforvolumeintegrals.Whataretherelationshipsbetweenthem?Stokes’theorem编辑课件SConsideringasurfaceShavingelementdSandcurveCdenotesthecurve:Stokes’Theorem(連接「線」和「面」的關係)

IfthereisavectorfieldA,thenthelineintegralofAtakenroundCisequaltothesurfaceintegralof×AtakenoverS:Two-dimensionalsystem编辑课件PQHowtomakealinetoasurface?PandQrepresentthesamepoint!你看到了一個「面」,你要如何去描述?從「線」著手從「面」著手编辑课件AinAoutThetubularelementis“divergent”inthedirectionofflow.ThenetrateofmassflowfromunitvolumeGauss’DivergenceTheorem(連接「面」和「體」的關係)

Wealsohave:ThesurfaceintegralofthevelocityvectorugivesthenetvolumetricflowacrossthesurfaceThemassflowrateofaclosedsurface(volume)编辑课件Gauss’DivergenceTheorem

(連接「面」和「體」的關係)

Stokes’Theorem(連接「線」和「面」的關係)

编辑课件UsefulequationsaboutHamilton’soperator...Aistobedifferentiatedvalidwhentheorderofdifferentiationisnotimportantinthesecondmixedderivative编辑课件CoordinatesotherthancartesianSphericalpolarcoordinates(r,,)Fig7.15theedgeoftheincrementelementisgeneralcurved.Ifa,b,careunitvectorsdefinedaspointP:

编辑课件ThegradientofascalarpointfunctionU:AssumingthatthevectorAcanberesolvedintocomponentsintermsofa,b,andc:编辑课件CoordinatesotherthancartesianCylindricalpolarcoordinates(r,,z)Fig7.17theedgeoftheincrementelementisgeneralcurved.Ifa,b,careunitvectorsdefinedaspointP:

编辑课件ThegradientofascalarpointfunctionU:AssumingthatthevectorAcanberesolvedintocomponentsintermsofa,b,andc:编辑课件Howcanweusevectorsinchemicalengineeringproblems?WhytheHamilton’soperatorisimportantforchemicalengineers?编辑课件Consideringthestudyof“fluidflow”,theheatingeffectduetofrictionandmasstransferareignored:Newtonianfluid :coefficientofviscosityremainsconstantIndependentvariables :x,y,zandtimeDependentvariables :u,v,w,pressure,density5dependentvariables5equations:(1)continuityequation(massbalance)(2)equationofstate(densityandpressure)(3)~(5)Newton’ssecondlawofmotiontoafluidelement(relatingexternalforces,pressureforce,viscousforcestotheaccelerationoffluidelement)Navier-StokesequationSolvetogether?编辑课件Stokes’Approximation(omittheinertiaterm,Re<<1)dimensionlessformdimensionlessgroupsdimensionlesstimedimensionlesspressurecoefficientReynoldsnumberincompressiblenotuseful,usuallyu,notp,isgivenvorticityanalogoustotheheatandmasstransferequation编辑课件TheidealfluidApproximation(omittheviscousandinertiaterm,Re>>)ifsteadystateandvorticity=0Bernoulli’sequation:(1)laminarflowissteady(2)imcompressible(3)inviscid(4)irrotationalincompressibleThevorticityofanyfluidelementremainsconstant.编辑课件ifafluidmotionstartsfromrest,thevorticityiszeroandflowisirrotationalReca

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论