版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06向量专题(新定义)一、单选题1.(2023·全国·高三专题练习)定义平面向量之间的一种运算“⊙”如下:对任意的.令,下面说法错误的是(
)A.若与共线,则B.C.对任意的,,D.2.(2022春·湖南邵阳·高一统考期中)定义.若向量,向量为单位向量,则的取值范围是(
)A. B. C. D.3.(2021春·云南昆明·高一云南师大附中校考期中)平面内任意给定一点和两个不共线的向量,,由平面向量基本定理,平面内任何一个向量都可以唯一表示成,的线性组合,,则把有序数组称为在仿射坐标系下的坐标,记为,在仿射坐标系下,,为非零向量,且,,则下列结论中(
)①②若,则③若,则
④一定成立的结论个数是(
)A.1 B.2 C.3 D.44.(2022·高一单元测试)若对于一些横纵坐标均为整数的向量,它们的模相同,但坐标不同,则称这些向量为“等模整向量”,例如向量,即为“等模整向量”,那么模为的“等模整向量”有(
)A.4个 B.6个 C.8个 D.12个5.(2017·四川广元·统考三模)对于个向量,若存在个不全为0的示数,使得:成立;则称向量是线性相关的,按此规定,能使向量,,线性相关的实数,则的值为(
)A. B.0 C.1 D.26.(2022秋·内蒙古鄂尔多斯·高三统考期中)对任意两个非零的平面向量,定义,若平面向量满足,的夹角,且和都在集合中,则=(
)A. B.1 C. D.7.(2023·全国·高三专题练习)互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P作两坐标轴的平行线,其在x轴和y轴上的截距a,b分别作为点P的x坐标和y坐标,记,则在x轴正方向和y轴正方向的夹角为的斜坐标系中,下列选项错误的是(
)A.当时与距离为B.点关于原点的对称点为C.向量与平行的充要条件是D.点到直线的距离为8.(2022春·黑龙江大庆·高三大庆实验中学校考阶段练习)如图所示,设Ox,Oy是平面内相交成角的两条数轴,分别是与x,y轴正方向同向的单位向量,则称平面坐标系xOy为斜坐标系,若,则把有序数对叫做向量的斜坐标,记为.在的斜坐标系中,﹒则下列结论中,错误的是(
)①;②;③;④在上的投影为A.②③ B.②④ C.③④ D.②③④9.(2021春·上海浦东新·高一华师大二附中校考阶段练习)如图,定义、的向量积,为当、的起点相同时,由的方向逆时针旋转到与方向相同时,旋转过的最小角,对于,,的向量积有如下的五个结论:①;
②;③;
④;⑤;其中正确结论的个数为(
)A.1个 B.2个C.3个 D.4个10.(2022春·山西朔州·高一校考阶段练习)定义为两个向量,间的“距离”,若向量,满足下列条件:(ⅰ);(ⅱ);(ⅲ)对于任意的,恒有,现给出下面结论的编号,①.②.③.④.⑤.则以上正确的编号为(
)A.①③ B.②④ C.③④ D.①⑤11.(2018·湖南·统考一模)在实数集中,我们定义的大小关系“”为全体实数排了一个“序”,类似的,我们这平面向量集合上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个向量,,当且仅当“”或“且”,按上述定义的关系“”,给出下列四个命题:①若,,,则;②若,,则;③若,则对于任意的,;④对于任意的向量,其中,若,则.其中正确的命题的个数为(
)A.4 B.3 C.2 D.112.(2017秋·河南郑州·高三郑州一中阶段练习)若非零向量的夹角为锐角,且,则称被“同余”.已知被“同余”,则在上的投影是(
)A. B. C. D.13.(2022春·陕西榆林·高一榆林市第一中学校考期中)设定义一种向量积:.已知,,点在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的最大值A及最小正周期T分别为()A.2,π B.2,4πC.,4π D.,π14.(2023·河北衡水·高三河北衡水中学校考阶段练习)设向量与的夹角为,定义.已知向量为单位向量,,,则(
)A. B. C. D.15.(2022春·浙江金华·高一浙江金华第一中学校考期中)记,设,为平面内的非零向量,则()A. B.C. D.16.(2021·全国·高三专题练习)对于向量,把能够使得取到最小值的点称为的“平衡点”.如图,矩形的两条对角线相交于点,延长至,使得,联结,分别交于两点.下列的结论中,正确的是(
)A.的“平衡点”为.B.的“平衡点”为的中点.C.的“平衡点”存在且唯一.D.的“平衡点”必为二、多选题17.(2022春·浙江·高一期中)如图所示,在平面上取定一点O和两个以点O为起点的不共线向量,,称为平面上的一个仿射坐标系,记作,向量与有序数组之间建立了一一对应关系,有序数组称为在伤射坐标系下的坐标,记作.已知,是夹角为的单位向量,,,则下列结论中正确的有(
)A. B.C. D.在方向上的投影向量为18.(2022春·河南·高一校联考阶段练习)对任意两个非零向量,定义新运算:.已知非零向量满足且向量的夹角,若和都是整数,则的值可能是(
)A.2 B. C.3 D.419.(2023·全国·高三专题练习)已知向量,是平面内的一组基向量,O为内的定点,对于内任意一点P,当时,则称有序实数对为点P的广义坐标.若点A,B的广义坐标分别为,,关于下列命题正确的是(
)A.线段A,B的中点的广义坐标为B.A,B两点间的距离为C.若向量平行于向量,则D.若向量垂直于向量,则20.(2022·江苏南京·统考模拟预测)设是大于零的实数,向量,其中,定义向量,记,则(
)A.B.C.D.21.(2022·浙江温州·高一永嘉中学统考竞赛)设、、是平面上任意三点,定义向量的运算:,其中由向量以点为旋转中心逆时针旋转直角得到(若为零向量,规定也是零向量).对平面向量、、,下列说法正确的是(
)A.B.对任意,C.若、为不共线向量,满足,则,D.22.(2023春·湖北武汉·高一华中师大一附中校考阶段练习)对任意两个非零的平面向量和,定义,若平面向量满足与的夹角,且和都在集合中.给出以下命题,其中一定正确的是(
)A.若时,则B.若时,则C.若时,则的取值个数最多为7D.若时,则的取值个数最多为23.(2023·全国·高三专题练习)定义平面向量的一种运算“”如下:对任意的两个向量,,令,下面说法一定正确的是(
)A.对任意的,有B.存在唯一确定的向量使得对于任意向量,都有成立C.若与垂直,则与共线D.若与共线,则与的模相等三、填空题24.(2023春·江苏泰州·高一靖江高级中学校考阶段练习)设向量与的夹角为,定义与的“向量积”,是一个向量,它的模等于,若,,则______.25.(2018春·安徽芜湖·高一芜湖一中校考阶段练习)在平面斜坐标系中,,平面上任一点关于斜坐标系的斜坐标是这样定义的:若(其中,分别为,轴方向相同的单位向量),则的坐标为,若关于斜坐标系的坐标为,则______26.(2019春·安徽芜湖·高一校联考期中)定义,若,,则与方向相反的单位向量的坐标为______________.27.(2022秋·湖南长沙·高三校考阶段练习)已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量.如图所示,顶角的等腰三角形PQR的顶点P、Q的坐标分别为、,则顶点R的坐标为______.28.(2022春·北京海淀·高一校考期中)设平面中所有向量组成集合,为中的一个单位向量,定义.则下列结论中正确的有___________(只需填写序号).①若、,则;②若,,则;③若,,,则有唯一解.29.(2022春·江苏南通·高一海安市曲塘中学校考期中)小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若,,则.试用上述成果解决问题:已知,,,则___________.30.(2022春·上海宝山·高一上海交大附中校考阶段练习)关于任意平面向量可实施以下6种变换,包括2种v变换和4种w变换:模变为原来的倍,同时逆时针旋转90°;:模变为原来的倍,同时顺时针旋转90°;:模变为原来的倍,同时逆时针旋转45°;:模变为原来的倍,同时顺时针旋转45°;:模变为原来的倍,同时逆时针旋转135°;:模变为原来的倍,同时顺时针旋转135°.记集合,若每次从集合S中随机抽取一种变换.经过n次抽取,依次将第i次抽取的变换记为,即可得到一个n维有序变换序列,记为,则以下判断中正确的序号是______.①单位向量经过2022次v变换后所得向量一定与向量垂直;②单位向量经过2022次w变换后所得向量一定与向量平行;③单位向量经过变换后得到向量,则中有且只有2个v变换;④单位向量经过变换后不可能得到向量;⑤存在n,使得单位向量经过次变换后,得到.31.(2022春·湖南株洲·高一株洲二中校考阶段练习)设V是已知平面M上素有向量的集合,对于映射,记的象为.若映射满足:对所有及任意实数都有,则f称为平面M上的线性变换,现有下列命题:①设f是平面M上的线性变换,,则;②若是平面M上的单位向量,对,设,则f是平面M上的线性变换;③对,设,则f是平面M上的线性变换;④设f是平面M上的线性变换,,则对任意实数k均有.其中的真命题是______(写出所有真命题的编号).32.(2021春·重庆南岸·高一重庆第二外国语学校校考阶段练习)定义平面非零向量之间的一种运算“※”,记,其中是非零向量的夹角,若,均为单位向量,且,则向量与的夹角的余弦值为_________.33.(2021春·陕西宝鸡·高一统考期末)设、是平面内相交成角的两条数轴,,分别是与轴,轴正方向同向的单位向量,若向量,则把有序数对叫做在坐标系中的坐标.假设,则的大小为________.34.(2018春·浙江台州·高一台州中学校考期中)已知向量及向量序列:满足如下条件:,且,当且时,的最大值为__________.35.(2017春·北京东城·高二统考期末)已知平面向量,平面向量,(其中).定义:.若,,则=_____________;若,且,,则_________,__________(写出一组满足此条件的和即可).36.(2014·安徽·高考真题)已知两个不相等的非零向量两组向量和均由2个和3个排列而成.记,表示所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①有5个不同的值.②若则与无关.③若则与无关.④若,则.⑤若,则与的夹角为37.(2021春·重庆沙坪坝·高一重庆南开中学校考阶段练习)定义:对于实数和两个定点、,在某图形上恰有个不同的点,使得,称该图形满足“度囧合”,若在边长为的正方形中,,,且该正方形满足“度囧合”,则实数的取值范围是_________.38.(2022·全国·高三专题练习)定义两个向量组的运算,设为单位向量,向量组分别为的一个排列,则的最小值为_______.39.(2022·北京顺义·统考二模)向量集合,对于任意,,以及任意,都有,则称集合是“凸集”,现有四个命题:①集合是“凸集”;②若为“凸集”,则集合也是“凸集”;③若都是“凸集”,则也是“凸集”;④若都是“凸集”,且交集非空,则也是“凸集”.其中,所有正确的命题的序号是_____________________.四、解答题40.(2022秋·河北沧州·高二校考开学考试)平面内一组基底及任一向量,若点在直线上或在平行于的直线上,我们把直线以及与直线平行的直线称为“等和线”,此时为定值,请证明该结论.41.(2022秋·上海嘉定·高二上海市嘉定区第一中学校考阶段练习)已知在平面直角坐标系中,为坐标原点,定义非零向量的“相伴函数”为,向量称为函数的“相伴向量”;记平面内所有向量的“相伴函数”构成的集合为(1)已知,,若函数为集合中的元素,求其“相伴向量”的模的取值范围;(2)已知点满足条件:,,若向量的“相伴函数”在处取得最大值,当在区间变化时,求的取值范围;(3)当向量时,“相伴函数”为,若,方程存在4个不相等的实数根,求实数的取值范围.42.(2022春·上海奉贤·高一校考期末)对于一个向量组,令,如果存在,使得,那么称是该向量组的“好向量”(1)若是向量组的“好向量”,且,求实数的取值范围;(2)已知,,均是向量组的“好向量”,试探究的等量关系并加以证明.43.(2021春·山西临汾·高一统考阶段练习)如图,在正方形ABCD中,点E是AB的中点,点F,G分别是AD,BC的二等分点.(1)EF,EG有什么关系?用向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PHP开发工程师PHP程序员岗位职责
- java主程序员岗位职责
- 重庆人文科技学院《绩效管理实务》2023-2024学年第一学期期末试卷
- 茶叶品鉴拍卖方案
- 茶具纸塑包装课程设计
- 重庆财经学院《国际服务贸易》2022-2023学年第一学期期末试卷
- 缠绕机课程设计
- 重庆财经学院《操作系统综合实践》2022-2023学年期末试卷
- 仲恺农业工程学院《园艺植物育种学》2021-2022学年第一学期期末试卷
- 炒饭炒粉营销策略研究报告
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 电磁波法探测技术—地质雷达综述
- 《色彩搭配》PPT课件(图文)
- HXD1C机车操纵方法
- 提高轻质隔板墙体工程施工过程过程质量合格率要点
- 不锈钢焊接工艺标准规范
- 一次性纤维环缝合器(课堂PPT)
- (完整word版)项目比价表
- 行政诉讼被告代理词
- 城市供水管网改造项目建议书范文
- 幼儿园中班歌曲《我是快乐的小蜗牛》
评论
0/150
提交评论