




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
传染病模型2
正规战与游击战动态模型
描述对象特征随时间(空间)的演变过程
分析对象特征的变化规律
预报对象特征的未来性态
研究控制对象特征的手段
根据函数及其变化率之间的关系确定函数微分方程建模
根据建模目的和问题分析作出简化假设
按照内在规律或用类比法建立微分方程1传染病模型问题
描述传染病的传播过程
分析受感染人数的变化规律
预报传染病高潮到来的时刻
预防传染病蔓延的手段
按照传播过程的一般规律,用机理分析方法建立模型
已感染人数(病人)i(t)
每个病人每天有效接触(足以使人致病)人数为模型1假设若有效接触的是病人,则不能使病人数增加必须区分已感染者(病人)和未感染者(健康人)建模?模型2区分已感染者(病人)和未感染者(健康人)假设1)总人数N不变,病人和健康人的比例分别为2)每个病人每天有效接触人数为,且使接触的健康人致病建模~日接触率SI模型模型21/2tmii010ttm~传染病高潮到来时刻(日接触率)tmLogistic模型病人可以治愈!?t=tm,di/dt最大模型3传染病无免疫性——病人治愈成为健康人,健康人可再次被感染增加假设SIS模型3)病人每天治愈的比例为~日治愈率建模~日接触率1/~感染期~一个感染期内每个病人的有效接触人数,称为接触数。模型3i0i0接触数=1~阈值感染期内有效接触感染的健康者人数不超过病人数1-1/i0模型2(SI模型)如何看作模型3(SIS模型)的特例idi/dt01>10ti>11-1/i0t1di/dt<0模型4传染病有免疫性——病人治愈后即移出感染系统,称移出者SIR模型假设1)总人数N不变,病人、健康人和移出者的比例分别为2)病人的日接触率
,日治愈率,
接触数=/建模需建立的两个方程模型4SIR模型无法求出的解析解在相平面上研究解的性质模型4消去dtSIR模型相轨线的定义域相轨线11si0D在D内作相轨线的图形,进行分析si101D模型4SIR模型相轨线及其分析传染病蔓延传染病不蔓延s(t)单调减相轨线的方向P1s0imP1:s0>1/i(t)先升后降至0P2:s0<1/
i(t)单调降至01/~阈值P3P4P2S0模型4SIR模型预防传染病蔓延的手段(日接触率)卫生水平(日治愈率)医疗水平传染病不蔓延的条件——s0<1/的估计
降低s0提高r0
提高阈值1/
降低(=/),群体免疫模型4SIR模型被传染人数的估计记被传染人数比例x<<s0i0P1i00,s01小,s01提高阈值1/降低被传染人数比例xs0-1/=2正规战与游击战战争分类:正规战争,游击战争,混合战争只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例第一次世界大战Lanchester提出预测战役结局的模型一般模型
每方战斗减员率取决于双方的兵力和战斗力
每方非战斗减员率与本方兵力成正比
甲乙双方的增援率为u(t),v(t)f,g
取决于战争类型x(t)~甲方兵力,y(t)~乙方兵力模型假设模型正规战争模型
甲方战斗减员率只取决于乙方的兵力和战斗力双方均以正规部队作战
忽略非战斗减员
假设没有增援f(x,y)=ay,a~乙方每个士兵的杀伤率a=rypy,ry~射击率,
py~命中率0正规战争模型为判断战争的结局,不求x(t),y(t)而在相平面上讨论x与y的关系平方律模型乙方胜游击战争模型双方都用游击部队作战
甲方战斗减员率还随着甲方兵力的增加而增加
忽略非战斗减员
假设没有增援f(x,y)=cxy,c~乙方每个士兵的杀伤率c=rypyry~射击率py~命中率py=sry/sxsx~甲方活动面积sry~乙方射击有效面积0游击
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年纺织纤维检测仪项目投资价值分析报告
- 2025至2030年竹节缎项目投资价值分析报告
- 2025至2030年电喷燃油泵总成项目投资价值分析报告
- 体表肿物切除病人护理
- 管理层的财务思维
- 2025至2030年封闭式全自动电镀生产线项目投资价值分析报告
- 2025至2030年大卷车项目投资价值分析报告
- 雷电及防雷过电压-接地的基本概念(高电压技术)
- 2025至2030年五粮春项目投资价值分析报告
- 2025至2030年中国高纯氧化铝行业市场全景调查及投资潜力研究报告
- 中国桂花茶行业市场前景预测及投资价值评估分析报告
- 陕西省县以下医疗卫生机构定向招聘真题2024
- 【初中信息】数据分析与处理(课件)-八年级信息科技全一册同步教学(人教版2024)
- 2024年中国邮政储蓄银行广东省分行招聘笔试真题
- 危重患者护理操作流程
- 2025山东能源集团中级人才库选拔易考易错模拟试题(共500题)试卷后附参考答案
- 第五单元:数学广角-鸽巢问题(教学设计)-【大单元教学】六年级数学下册同步备课系列(人教版)
- 《水利工程建设项目生产安全重大事故隐患清单指南》知识培训
- 浙江省温州市瑞安市2023-2024学年六年级下学期数学期中分项评价试卷(含答案)
- 山东省德州市2024年中考化学试卷(含答案)
- (新版)广电全媒体运营师资格认证考试复习题库(含答案)
评论
0/150
提交评论