成果采矿08-1设计_第1页
成果采矿08-1设计_第2页
成果采矿08-1设计_第3页
成果采矿08-1设计_第4页
成果采矿08-1设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原EffectsoffrequencyandgroutedlengthonthebehaviorofguidedultrasonicwavesinrockboltsD.H.Zoua,Y.Cui,V.Madengaa,C.Experimentswereconductedtostudythebehaviorofguidedwavesinandgroutedrockbolts.Ultrasonicwaveswithfrequenciesfrom25to100kHzwereusedasexcitationinputs.Testswerefirstconductedonboltstohelpunderstandthebehaviorofguidedwavesinnon-groutedbolts.Theeffectsofwavefrequencyandgroutedlengthonthegroupvelocityandattenuationoftheguidedultrasonicwaveswerethenevaluated.Thetestresultsindicatedclearbutdifferenttrendsforthegroupvelocityintheandthegroutedbolts.Theattenuationinboltswasnotaffectedbyboltlengthandfrequency.However,ingroutedboltsitincreasedwithfrequencyandgroutedlength.Itwasalsofoundthatthetwomainsourcesofattenuationarethesetupenergyloss,whichhasafixedtyforaspecifictypeoftestsetup,andthedispersiveandspreadingenergylosswhichvarieswithfrequencyandboltlength.2007Elsevier.Allrights :Rockbolts;Guidedwaves;Attenuation;Amplitude;GroupRockboltsarewidelyusedinundergroundandsurfaceexcavationsinminingandcivilengineeringforgroundreinmentandstabilization.Inmanyapplications,rockboltsaregroutedinthegroundwithcementorresin.Testingofthegroutqualityandmonitoringofthebolttensionofrockboltshaslongbeenachallengeinthefield.Conventionally,groutqualityisassessedbypull-outtestandover-coring.Bothmethodsaredestructiveandtimeconsuming.Theusefulnessofpull-outtestresultsasameasureofthegroutqualitycanbelimitedbythecriticallengthofgroutbeyondwhichthesteelboltwillfailfirst.Therefore,othermethods,suchasnon-destructivetestingmethodsusingultrasonicwaveshave eattractive.Inrecentyears,researchinthisareahasbeenveryactive.Itisnoticedthatpropertiesofguidedwaves,suchasvelocityandattenuation,arefunctionsoftheinputwavefrequency.Althoughtheguidedultrasonicwaveseemstobeapromisingmethodformonitoringrockbolts,researchinthisareaisstillintheearlystageandmanytechnicalproblemsremaintobesolved.Inagroutedbolt,wavebehaviorisnotonlyrelatedtothegroutqualitybutalsotothewavefrequency.ThegroutedlengthandthepropertiesofmaterialssurroundingtheboltmayallyanimportantOneoftheimportantcharacteristicsofaguidedwaveisthatitsvelocitynotonlydependsonthematerialpropertiesbutalsoonthethicknessofthematerialandthewavefrequency.Unlikeabulkwave,theguidedwavepropagatesasapacket,whichismadeupofabandofsuperimposedcomponentswithdifferentfrequencies.Itisthegroupvelocitythatdefinesthespeedatwhichthe‘envelope’ofthepacketmovesalong.Ithasbeenshownthatinarockbolt,therateofenergytransferisidenticaltothegroupvelocity.Ourrecentresearchexaminedtheeffectsofwavefrequencyandthecuringtimeofgroutonthegroupvelocityofguidedultrasonicwavesinrockbolts.Wefoundthatthewavegroupvelocityismuchloweringroutedboltsthaninbolts.Thelowerthefrequency,thelowerthevelocity.Ourtestresultsindicatedthattheinputfrequencyforrockbolttestingbelow100kHzwouldprovidebetterresolutionandclearersignals.ThistionissupportedbytheresultsdiscussedfurtheroninthisAttenuationisanotherimportantcharacteristicofaguidedwave.Ingeneral,attenuationreferstothetotalreductioninthesignalstrength.Attenuationoccursasanaturalconsequenceofsignaltransmissionoveradistanceduetowaveenergyloss.Therehavebeenextensiveresearchandexperimentsonattenuationofbulkwaves.Waveattenuationisdefinedbyanattenuationcoefficient.Forexample,thep-waveamplitudedecaycanbeexpressedasafunctionoftravelln

ln(R)

whereAaistheamplitudeatlocationa,Abistheamplitudeatlocationb,istheattenuationcoefficient,constant,Listhedistancefromlocationsatob,Ristheamplituderatio,R=Ab/Aa.However,therehasbeenlittleresearchonattenuationofguidedwaves,especiallyingroutedrockbolts.Waveattenuationingroutedrockboltsisverycomplicatedandisoftenaffectedbymanyfactorsincludingthegroutingmaterialandthegroutquality.Eachofthesefactorsmaycausesomeattenuation.Ingeneral,theobservedwaveattenuationmayhaveseveralcomponents,someofwhichmaybefrequency-dependentandsomefrequency-independent.Thetotalattenuationisthesumofthecontributionsofallinfluencingfactors[14],andthisrelationshipappliestobothbulkwavesandguidedwaves: iLiln(Ri)ln(Ri

where

istheattenuationcoefficientoftheithcomponentcausedbytheithfactor,

istraveldistanceaffectedbytheithfactor,

istheamplituderatioafterattenuationofthecomponent,If

Liisthesameforallfactors,thenwhere

iLtnnisthetotalattenuation

ortinn

Accordingtothecause,attenuationmaybegroupedintothefollowingDissipativeattenuation:Anenergylossduetonon-elasticofthemedium.Itincreaseswiththewavetraveldistanceandmay eprofoundoveralongdistancedependingonthematerialproperty.Thistypeofattenuationinsteelisgenerallyverylowcomparedtothatinrocks.Asshownlater,itcanbeignoredinpracticeforguidedwavestravelinginrockboltsduetothelowofsteelandtheshortboltlength(1–3m).Dispersiveattenuation:Anenergylossduetodeforma-tionofwaveformduringwavepropagation,achar-acteristicthatdistinguishesguidedwavesfrombulkwaves.Thephenomenonofwavedeformationiscalledenergydispersion.Spreadingattenuation:Anenergylosswhichoccursattheinterfacebetweentheboltandthegroutingmaterial.Asaguidedwavereachestheinterface,notallofthewaveenergycanbereflectedattheinterface.Partoftheenergypassesthroughtheinterfaceandistransmittedintothegroutedmaterial,aphenomenoncalledenergyleakage.Therefore,itcanbereasonablyassumedthatattenuationingroutedrockboltsconsistsoftwomajorcomponents;dispersiveandspreadingattenuation,bothofwhicharefrequency-dependent.ThetotalattenuationingroutedrockboltsshouldthusbethesumofthetwocomponentsandinfuturewillbereferredtoasDISPattenuation.Itshouldbepointedouthowever,thatasobservedduringourlaboratorytests,theamplitudedecayandtheenergylossofguidedwavesrecordedduringtestsofrockboltsinlaboratoryarenotsolelyfromtheDISPattenua-tion.Anotherimportantcomponentistheenergylossduetorefractionatthecontactsurfacesbetweentheboltsampleandtheequipment.Theoretically,whenawavereachesaninterfaceadjoiningamediumwhichdoesnottransmitmechanicalwaves(e.g.,vacuumorair),norefractionoccursandallenergyisreflectedback.Inarockbolttest,transducersareattachedtotheboltsample,whichisincontactwiththetestingframe(e.g.,atableorarack).Itisatthesecontactsurfacesthatsomeenergyisinevitablyrefracted,causingenergyloss.Thistypeofenergyloss,asshownlater,isexpectedtobeconstantandisofafixedtyforaspecifictypeoftestsetup.Infutureitwillbecalledsetupenergyloss.Asaresult,therecordedamplitudedecayandenergylossduringrockbolttestswillbegreaterthanwhatisactuallycausedbytheDISPattenuation.AnongoingresearchprogramatDalhousieUniversityisaimedatstudyingthecharacteristicsofguidedwavesingroutedrockbolts.Effectsofwavefrequencyandgroutedlengthonthebehaviorofguidedultrasonicwavesinboltsandgroutedboltshavebeenstudied.Theachievedresultsarestrikinglyconvincing.Thedetailsaregivenbelow.ExperimentsofguidedultrasonicwaveAnunderstandingoftheultrasonicwavecharacteristicsinbolts(non-groutedbolts)isessentialtothestudyofthebehaviorofguidedultrasonicwavesingroutedbolts.Inthisresearch,bothboltsandgroutedboltsweretested.Thetestsamplesincludedtwo boltsandthreegroutedboltsofvariouslengths.Theboltswerebaresteelbars.Thegroutedboltsweremadebycastingacylindricalconcreteblockaroundasteelbartosimulatethegroutedrockboltsinthefield(Fig.1).Intheseteststheboltswerenottensioned.ThesamplesizesandotherdescriptionsaregiveninTable1.Thetwobolts(samples1and2)wereusedtostudytheeffectsofboltlengthandfrequencyonthebehaviorofguidedultrasonicwaves,particularlythesetupenergylossduetoequipmentsetup.Thethreegroutedbolts(samples3–5)withvaryinggroutedlengthswereusedtoinvestigatetheeffectsoffrequencyandgroutedlengthontheattenuationofguidedultrasonicwaves.TestinstrumentsandexperimentTheinstrumentsusedinthestudyincludedaHandy-scopeHS-3(adataacquisitiondevicewithawavegenerator),anamplifier,twotransducers,andacomputer.TheequipmentsetupisillustratedinFig.2.TheHS-3unithasthecapabilityofgeneratingultrasonicsignalswithvaryingfrequencies,aswellasreceivinganddigitizingthereceivedwavesignals.Sinusoidalultrasonicinputsignalswereusedtoexcitethetransmitteratthenon-groutedendofthebolt.Thereceivedsignalattheotherendwasamplifiedbeforebeingdigitized.Thecomputerwasusedtorecord,disy,andprocessthesignals.Thetransducersusedwerepiezo-electric,typesR6andR15,fromPhysicalAcousticsCorporation.Bothendsofthetestboltsweresmoothedandvacuumgreasewasusedtoprovidegoodcontactwiththetransducers.Theexperimentswereconductedbyexcitingatransmit-ter(R6)withinputsignalsatdifferentfrequenciesintothenon-groutedendofaboltsample.Thesignalarrivingattheotherendwaspickedupbyatransducer(R15)andthewholewaveformwasrecordeddigitally.Duringeachtest,theinputfrequencyrangedfrom25to100kHz.ExperimentdataysisInthefollowing,‘firstarrival’referstothefirstwavepacketthatarrivedatthereceivingendand‘echo’referstothesamewavepacketthatreachedthereceivingendforasecondtimeafteritwasreflectedbackfromtheinputend.Theattenuationwasestimatedbyassessingthewaveamplituderatiooftheechooverthefirstarrival.AttenuationAsexinedearlier,waveattenuationisnotonlyrelatedtothegroutqualitybutalsotothefrequencyandotherfactors.Theamplituderatioofawavepacketthathastraveledsomedistancehasaninverselogarithmrelation-ship,asshowninEq.(1),withtheattenuationcoefficient.Thehighertheattenuation,thegreatertheenergyloss,andthelowertheamplituderatio.Thereforethemeasuredamplituderatio,Rmasdefinedbelow,isusedasanindirectmeasurementofattenuationinthisstudy:R

1whereA1istheaverageamplitudeofthefirstarrivalandA2istheaverageamplitudeoftheechoasdefinedbelow.Itisunderstoodthatgoodgroutqualityresultsinhigherenergylossalongtherockboltduetoenergyleakageanddispersion.Itisthereforeverydifficulttostudywaveattenuationingroutedboltsbecausetherecordedwave-formisoftenveryweakandisaffectedbyalotofnoises.Thereceivedwaveformsometimesmaynotbeveryclear,makingitdifficulttoidentifytheboundarybetweenthefirstarrivalandtheecho.This esmoreproblematicwhentheboltisshortorwhendispersionisserious.Theumwaveamplitudeinthiscasemaybeaffectedbysuchnoises.Itisthereforecriticaltodevelopasuitableysismethodtoyzetheattenuationofultrasonicwavesandtogetmeaningfulresults.Inthispaper,amethodtocalculatetheamplituderatiousingtheaverageamplitudeoveratimeintervalissuggestedasfollows:titikv2i12i t= ti2v(t)dt,i1,=i(ti2ti1 i

titi2

isthetimeintervalcenteredattheumamplitudeofawavevi(t

istherecordedwaveamplitude,i=1isforthefirstarrival,andi=2isfortheecho,kismaterialconstant.The

vi(t)

andtheirdefinitionsareillustratedinFig.3.Becausemethodconsiderstheaverageamplitudeacrossintervalsofequallengthsoftimeforthefirstarrivalandtheecho,theeffectsoferrorsandnoisesontheumamplitudewillbeminimized.Toevaluatetheeffectsofthetimeinterval

ontheaccuracyofthetheamplituderatiosinbolts—thoseinwhichtheboundarybetweenthefirstarrivalandtheechowasveryclear—werecalculatedwithdifferenttimeintervalsasapercentageofthewholewaveformsofthefirstarrivalandtheecho.Theresultsforsample1atdifferentfrequenciesareshowninFig.4.Itisclearthatifthetimeintervalistoosmall(e.g.,lessthan25%ofthewholewaveform),theamplituderatioasdeterminedbyEq.(5)varieswiththelengthofthetimeinterval.Whenthetimeintervalisgreaterthan25%ofthewholewaveform,theresultsvaryverylittleandarenearlythesameasthatat100%(thewholewaveform).Inthe

t1=t2=100

wereusedincalculationoftheaverageamplitudefortests.Withaninputsignalof25kHz,thistimeintervalcorrespondedto45%fthewholewaveforminbolts,andat100kHz,itcovered95%ofthewholewaveform.Itisapparentthatalthoughasmallpartofthewholewaveformhasnotbeenconsideredinthismethod,thecalculatedamplituderatiocanstillreflectthetotalenergylossinarockbolt.Thismethodhowevermakesitmucheasierinpracticetoestimatetheenergyloss,especiallywhentheboundarybetweenthefirstarrivalandtheechoingroutedrockboltsisdifficulttoidentifybecauseofdispersion.GroupvelocityThewavetraveltimeintherockboltisdefinedasthetimelapsefromthebeginningoftheexcitationsignal,whichwasrecordedfromtheinputendofthebolt,tothefirstarrival,whichwasrecordedfromtheotherendofthebolt.However,determinationofthebeginningofthefirstarrivalandtheechoisoftencomplicatedbythedispersioncharacteroftheguidedwave.Dispersionincreaseswithfrequency.Therecordedrawwaveformsthereforeneedtobefilteredfirstbyabandfiltertonarrowthefrequencybandaroundeachtestingfrequency[5].Thiswasachievedbyusingafilteringprogramdesignedin.Alltherecordedwaveformswerefilteredusingthisprogramtogiveanarrowbandof75kHz.Thearrivaltimedeterminedbythefilteredwaveformsisfoundtobemorerepresentativeoftheanticipatedactualwavetraveltimeataspecificfrequency.Withtheboltlengthandthetraveltimedeterminedusingthismethod,thegroupvelocityofguidedultrasonicwavescanbecalculated.Thecalculatedgroupvelocityisfoundtofollowdifferenttrendsintheandthegroutedbolts,asexinedlater.Forpartiallygroutedbolts,thegroupvelocityinthesegmentisconsideredthesameasthatinthebolts.EffectsoffrequencyandboltlengthonthebehaviorofguidedwavesinExperimentswereconductedonboltsusingfre-quenciesfrom25to100kHz.Fig.5a)showsthetypicalwaveformrecordedinsample1ataninputfrequencyof25kHz.Itwasobservedduringdataysisthatwiththeincreaseoftheinputfrequency,thetraveltimeofthefirstandtheechoreachingthereceivingendincreasedslightly,andthewaveamplitudereductionoftheechofromthefirstarrivalisalmostthesameatallinputfrequencies.AttenuationinThemeasuredamplituderatio,Rm,determinedfromthetwobolts(samples1and2)areshowninFig.6.Itcanbeconcludedfromthechartthatthetotalattenuationintheboltsdidnotchangewithfrequency.Theaverageamplituderatiois0.79forsample1and0.81for2.Thusitisalsoclearthattheamplituderatioisnotaffectedmuchbytheboltlengthandthattheverysmalldifferenceforthetwoboltsisnegligible.Thisconfirmsthatthedissipativeattenuationcanbeignoredforrockboltsbecauseoftheshorttravelingdistance.Sincethereislittleornodispersioninwaveforms,noristhereenergyleakagetoothermediums,theDISPattenuation,whichwasexpectedtochangewithfrequencyanddistance,isnegligibleinthebolts.Theenergylossforbothboltswasnearlyconstantanddidnotchangewithfrequencyorboltlength.Asdiscussedearlier,thispartoftheenergylosshasafixedamount,andismainlycausedbysetuploss,mostlyfromrefractionatthecontactsurfacesoftheboltsampleswithotherobjects.Thesetuplossishoweverexpectedtochangefordifferenttestsetups.IftheamplituderatioaftertheDISPattenuationisassumedasR1andafterthesetuplossasR2,thenthemeasuredamplituderatio,Rm,accordingtoEq.(2),willbe:Rm

Ascanbeseen,theattenuationrelationshipdefinedinEq.(1)appliesonlytoR1,nottothedirectlymeasuredRm,sinceR2isindependentfromtraveldistance.ForaboltR1≈1.0,themainenergylosswillbethesetuplossandRm≈R2.Itcanbeinferredthatforgroutedrockbolts,thenon-groutedlengthwillhaveverylittleeffectontheresultofattenuationbecauseofitsshortlengthandthemajorenergylosswillbeinthegroutedlength.ItcanalsobereasonablyconcludedfromFig.6thattheamplituderatio,R2,afterthesetuploss(approximay20%)forthetestsetupinthisresearchisabout0.8.GroupvelocityinAsindicatedabove,beforeestimatingthearrivaltime,therawwaveformswerefilteredwithabandfilter.Atypicalfilteredwaveformofsample1isillustratedinFig.5b),whichshowsamorewell-definedsignalthantherawwaveform.Thedeterminedgroupvelocitiesforthetwobolts(samples1and2)areshowninFig.7togetherwiththetheoreticalgroupvelocitysolution,whichwasdeterminedfromAchenbach’ssolutioninasteelbarof19.5indiameter[3].Itcanbeseeninthechartthattheresultsfromthefiltereddatafitwellwiththetheoreticalsolutioninthetestedfrequencyrange.Asthefrequencychangedfrom25to100kHz;thegroupvelocitydroppedbyabout10%.Thegroupvelocitywasapparentlynotaffectedbytheboltlength.EffectsoffrequencyandgroutedlengthonbehaviorofguidedExperimentswerealsoconductedonthegroutedrockboltsusingfrequenciesfrom25to100kHz.Thetypicalrawwaveformforsample4ataninputfrequencyof35kHzisdisyedin3.Itwasobservedfromtherecordeddatathatthewaveformsingroutedboltsshoweddispersion,apparentlymoreseriousathigherfrequencyranges.Atthesametime,astheinputfrequencyincreasedthelengthsoftimeforthefirstarrivalandtheechotoreachthereceivingenddecreasedsignificantly,followinganoppositetrendfromthatobservedinthebolts.ThewavereductionoftheechofromthefirstarrivalalsobecamemoreAttenuationingroutedrockTheresultsofthemeasuredamplituderatio,Rm,forthegroutedboltsatdifferentfrequenciesareshowninFig.8.ItisalreadyknownfromtheexperimentresultsofboltsinFig.6thattheamplituderatioafterthesetuploss,R2,is0.8andisindependentfromfrequency.Becausetheequipmentsetupandtestconditionsforthegroutedrockboltsarethesameasthoseforthebolts,itisassumedthattheamplituderatio,R2,isalso0.8inthegroutedbolts.ThustheamplituderatioR1aftertheDISPattenuationcanbecalculatedbyre-writingEq.(6)asR1=Rm/R2.Rmcanbecalculatedfromtherecordedwaveformsfollowingthesameprocedureasforbolts.TheresultsofR1ofthegroutedrockboltswithdifferentfrequenciesareshowninFig.9.Itcanbeseenthattheratio,R1,ofthegroutedrockboltsvariesinverselywithfrequencyandgroutedlength.Atfrequencieslessthan65kHz,R1decreasedlinearlywithfrequencyanditalsodecreasedwithgroutedlength.Itisnoticeablethatatfrequencieshigherthan65kHz,thedatawerescatteredandthelineartrendbecameunclear.Theexnationisthatbothdispersiveandspreadingattenuationincreasedwithfrequency.Thehigherthefrequency,thegreatertheenergyloss.Hence,thereceivedsignalbecameveryweakwhentheinputfrequencywasabove75kHz.Theweaksignalnotonlyintroducesmoremeasuringerrors,butalsoaggravatestheeffectsofnoises,makingtheresultslessreliable.GroupvelocityingroutedrockForthegroutedbolts,theresultsofgroupvelocitycalcu-latedfromtherawwaveformdataweretotallymeaningless.Onlyafterfilteringcouldmeaningfulresultsbeobtained.Thefilteringmethodandthearrivaltimeestimationmethodarethesameasthosepreviouslydiscussedforthe Thegroupvelocityinthegroutedlengthofapartiallygroutedrockboltwascalculatedusingthetraveltimeinthegroutedlengthonly.Thetraveltimeinthegroutedlengthwasdeterminedbysubtractingthetraveltimeinthe length,whichisassumedtohavethesamevelocityasthebolt,fromthetotaltraveltime.Themeasuredgroupvelocityinthegroutedlengthforsamples3–5areshowninFig.7,togetherwiththatfromtheItcanbeseenfromFig.7thattheresultsofthethreegroutedboltsareconsistenttoeachother.Thegroupvelocityinthegroutedboltsfollowedanoppositetrendasdidthatinthebolts;anditsvaluewasnotaffectedbythegroutedlength,butbythefrequency.Itisinterestingtonotethatatthelowfrequencyend(i.e.,25kHz),thegroupvelocityinthegroutedboltswasabouthalfofthatinthebolts;atfrequencieshigherthan75kHzthevelocityincreaseinthegroutedboltssloweddown,andatthehighfrequencyend(i.e.,100kHz),thevelocitywasapproachingthatofthebolts.Infact,athighfrequencies,itwasmoredifficulttoseparatethegroutedlengthandthelengthfromtherecordedsignals.Therefore,frequencieshigherthan75kHzaremendedfortheDiscussionsandThisresearchexaminedtheattenuationandgroupvelocityoftheguidedultrasonicwavesinrockbolts.Thetestresultsshowedvariationswithfrequencyandgroutedlength.Itwasdeterminedthatduetotheshortlengthofrockboltsusedinthefield,thedissipativeattenuationcanbeignored.Inbolts,thedispersiveandspreadingattenuationalongtheboltisnegligibleandthemainsourceofattenuationisfromthesetuplossofenergy,whichreducedtheamplitudeby20%inoneroundtripfortheequipmentsetupinthisresearch.Thesetuplossisconsideredtobefromfrequencyandboltlength,butdepen-dentuponthespecificequipmentsetup.Thegroupintheboltsdecreasedbyabout10%asthefrequencyincreasedfrom25to100Ingroutedbolts,thesetuplossisassumedtobethesameasthatintheboltsbecausethetestsetupwasthesame.However,thedispersiveandspreading(DISP)attenuationincreasedwithfrequencyandgroutedlength,anditwasmoreseverethanthatfromthesetuploss.TheamplituderatioduetotheDISPattenuationdecreasedasthefrequencyandgroutedlengthincreased.Thegroupwavevelocityinthegroutedlengthofthetestboltsincreasedsteadilyasthefrequencyincreasedto75kHzwhiletheincreasesloweddownatahigherfrequency.However,at25kHz,thegroupvelocitywasnearly50%lowerinthegroutedlengththanthatinthebolts.Asthefrequencyapproached100kHz,thevelocitydifferencebetweentheboltsandthegroutedlengthwasreducedtolessthan10%.Asindicatedearlier,theexperimentsinthisstudywereconductedusingatransmission-throughsetup(i.e.,withsensorsonbothendsofthetestedbolts).Thistypeofsetupisnotapplicabletothefieldwhereonlyoneendofarockboltisaccessible.Thenextstepofthisresearchwillbetoconductsimilartestsusingatransmission-echosetup(i.e.,withasensoratoneendonly).Thiswillrequireadifferenttestingdevice,whichisbeingcustom-builtforthespecifictestingrequirements.Duringthenextstageofresearch,tensionwillalsobeappliedtotheboltsamplestostudythetensioneffects.Theultimategoalofthisresearchwillbetodevelopanon-destructivetestingdeviceusingguidedultrasonicwavesforfieldmonitoringofgroutedrockbolts,particularlythegroutquality,groutedlength,boltfailure,andbolttension.ThisresearchwassupportedbyaresearchgrantfromtheNaturalSciencesandEngineeringResearchCouncilofCanada.中文译

D.H.Zoua,Y.Cui,V.Madengaa,C.25100千赫的超声波作为励磁输入,研究超声波在自由和锚固锚杆中传引ln

ln(R)

其中Aa,Bb分别是位置a,b处的振幅;是衰减系数且是常数;L是从a到bR是振幅比率,R=Ab/Aa iLiln(Ri)ln(Ri

n其中i是受第i个因素影响的第i个分量的衰减系数;Li是受第i个因素影响的距离;Ri是第iLi都相同,则有nnniLt其中t

i

中跟在岩石中相比普遍很低,如后面所述,在实践中由于钢的低阻力和锚杆长度(1~3m),超声导波测试的实了解超声波在自由锚杆(非锚固)试验样1锚杆试件的几何特征样锚杆长度锚杆直径锚固长度锚固直接100200345试验仪器和实验描在研究中所用的工具,包括一个手提示波器S3(有产生波的器),一个放器,两个传感器和一台电脑。设备安装的说明图,见图2。单一的手提示波器S3有发不同频率的超声波信号的能力,以及接收和数字化接收波的信号。超声波正弦输入信号被用来激发在锚杆非锚固末端的发射机。在另一端接收到的信号先是被扩增,然后被数字化。电脑被用来记录,显示和处理信号。实验的进行通过激发一个发射机(6),在锚杆样品非锚固的末端输入不同频率的输入信号,在信号到达的另一端被一个传感器15)次试验中,输入频率的范围介于25至100千赫。实验数据的分析方衰减估Rm1

其中A1是首次到达的平均振幅,A2是回声的平均振幅算,如下:titikv2i1 t2i 2 t)tiv2ii

其中(ti2ti1vi(t是波的振幅,i=1表示首次到达,i=2表示回声;k参数it)、ti2、ti1和它们的含义如图3所示。因为这个方法考虑两个相同时间间隔中首次到达和回声的平均振幅,所以误差和噪音对最大振幅的影响最小。为了说明时间间隔的长度对结果准确度的影响,用不同时间间隔计算自由锚杆中的振幅比(首次到达和回声的界限很明显)4的看出:当时间间隔很小时(25%),由方程5得到的振幅比随间隔时间的长短而变化。当时间间隔超过这个波形的25%时,结果变化就非常小,几乎达到100%。估算群自由锚杆中频率和锚杆长度对导波行为的影自由锚杆中的衰中,跟频率和距离有关的色散衰减在自由锚杆中也就可以忽略假设色散衰减后的振幅比是R1,安装损耗后的振幅比是R2,则由方程2得到实测振RmR1

对于自由锚杆11.0时,主要的能量损失是安装损耗,此时m2固锚杆中非锚固端的长度对衰减影响很小,因为距锚杆自由端很短,主要的能量损失在锚固端。从图6中可得出,这项研究中受安装损耗(大约20%)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论