版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题13函数、导数及其性质研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。函数、导数及其性质——近3年函数、导数及其性质考了40道,可见其重要性,一般为2-3道小题,主要考查定义域、最值、单调性、奇偶性、周期性、对称性、平移、导数、切线、零点等。分段函数、绝对值函数是重要载体。1.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理5))设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x 【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.【点评】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.2.2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理9))已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0) B.[0,+∞) C.[﹣1,+∞) D.[1,+∞) 【考点】5B:分段函数的应用.【专题】31:数形结合;4R:转化法;51:函数的性质及应用.【分析】由g(x)=0得f(x)=﹣x﹣a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.【点评】本题主要考查分段函数的应用,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键.3.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理5))函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3] 【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.4.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理11))设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.5.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理7))函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣ex,∴f′(x)=4x﹣ex=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.6.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(理8))若a>b>1,0<c<1,则()A.ac<bc B.abc<bac C.alogbc<blogac D.logac<logbc 【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=xc在(0,+∞)上为增函数,故ac>bc,故A错误;函数f(x)=xc﹣1在(0,+∞)上为减函数,故ac﹣1<bc﹣1,故bac<abc,即abc>bac;故B错误;logac<0,且logbc<0,logab<1,即=<1,即logac>logbc.故D错误;0<﹣logac<﹣logbc,故﹣blogac<﹣alogbc,即blogac>alogbc,即alogbc<blogac,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.7.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理53))函数f(x)=的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换;6B:利用导数研究函数的单调性.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.8.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理11))已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50 【考点】3K:函数奇偶性的性质与判断.【专题】36:整体思想;4O:定义法;51:函数的性质及应用.【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.9.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理13))曲线y=2ln(x+1)在点(0,0)处的切线方程为.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.10.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理11))若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1 【考点】6D:利用导数研究函数的极值.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.【解答】解:函数f(x)=(x2+ax﹣1)ex﹣1,可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1,=(x2+x﹣2)ex﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,考查计算能力.11.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理12))已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则(xi+yi)=()A.0 B.m C.2m D.4m 【考点】3P:抽象函数及其应用.【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】由条件可得f(x)+f(﹣x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,计算即可得到所求和.【解答】解:函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),即为f(x)+f(﹣x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,(x2,y2)为交点,即有(﹣x2,2﹣y2)也为交点,…则有(xi+yi)=(x1+y1)+(x2+y2)+…+(xm+ym)=[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(xm+ym)+(﹣xm+2﹣ym)]=m.故选:B.【点评】本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.12.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(理16))若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可【解答】解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1﹣ln2.【点评】本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题13.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理7))函数y=﹣x4+x2+2的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x>或﹣<x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.14.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理12))设a=,b=,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b 【考点】4M:对数值大小的比较.【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】直接利用对数的运算性质化简即可得答案.【解答】解:∵a=,b==,∴=,,∵,,∴ab<a+b<0.故选:B.【点评】本题考查了对数值大小的比较,考查了对数的运算性质,是中档题.15.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理14))曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a=.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用.【分析】球心函数的导数,利用切线的斜率列出方程求解即可.【解答】解:曲线y=(ax+1)ex,可得y′=aex+(ax+1)ex,曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.【点评】本题考查函数的导数的应用切线的斜率的求法,考查转化思想以及计算能力.16.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理11))已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B. C. D.1 【考点】52:函数零点的判定定理.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.【解答】解:因为f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(ex﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(ex﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(ex﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(ex﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(ex﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【点评】本题考查函数零点的判定定理,考查函数的单调性,考查运算求解能力,考查数形结合能力,考查转化与化归思想,考查分类讨论的思想,注意解题方法的积累,属于难题.17.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理15))设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.【答案】见解析。【考点】3T:函数的值.【专题】32:分类讨论;4R:转化法;51:函数的性质及应用.【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.【解答】解:若x≤0,则x﹣≤﹣,则f(x)+f(x﹣)>1等价为x+1+x﹣+1>1,即2x>﹣,则x>,此时<x≤0,当x>0时,f(x)=2x>1,x﹣>﹣,当x﹣>0即x>时,满足f(x)+f(x﹣)>1恒成立,当0≥x﹣>﹣,即≥x>0时,f(x﹣)=x﹣+1=x+,此时f(x)+f(x﹣)>1恒成立,综上x>,故答案为:(,+∞).【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.18.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理6))已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.19..(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(理15))已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.20.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文6))设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x 【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.【点评】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.21.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文12))设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞) C.(﹣1,0) D.(﹣∞,0) 【考点】5B:分段函数的应用.【专题】11:计算题;31:数形结合;49:综合法;51:函数的性质及应用.【分析】画出函数的图象,利用函数的单调性列出不等式转化求解即可.【解答】解:函数f(x)=,的图象如图:满足f(x+1)<f(2x),可得:2x<0<x+1或2x<x+1≤0,解得x∈(﹣∞,0).故选:D.【点评】本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.22.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文13))已知函数f(x)=log2(x2+a),若f(3)=1,则a=.【答案】见解析。【考点】3T:函数的值;53:函数的零点与方程根的关系.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】直接利用函数的解析式,求解函数值即可.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.【点评】本题考查函数的解析式的应用,函数的领导与方程根的关系,是基本知识的考查.23.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文9))已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 【考点】3A:函数的图象与图象的变换.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数f(x)=lnx+ln(2﹣x),可得f(x)=f(2﹣x),进而可得函数图象的对称性.【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.【点评】本题考查的知识点是函数的图象与图象变化,熟练掌握函数图象的对称性是解答的关键.24.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文14))曲线y=x2+在点(1,2)处的切线方程为.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】求出函数的导数,求出切线的斜率,利用点斜式求解切线方程即可.【解答】解:曲线y=x2+,可得y′=2x﹣,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.【点评】本题考查切线方程的求法,考查转化思想以及计算能力.25.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文8))若a>b>0,0<c<1,则()A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb 【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴logca<logcb,故B正确;∴当a>b>1时,0>logac>logbc,故A错误;ac>bc,故C错误;ca<cb,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.26.(2022年普通高等学校招生统一考试新课标Ⅰ卷数学(文9))函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣ex,∴f′(x)=4x﹣ex=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.27.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文3))函数f(x)=的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换;6B:利用导数研究函数的单调性.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.28.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文12))已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50 【考点】3K:函数奇偶性的性质与判断.【专题】36:整体思想;4O:定义法;51:函数的性质及应用.【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.29.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文13))曲线y=2lnx在点(1,0)处的切线方程为.【答案】见解析。【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.30.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文8))函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞) 【考点】3G:复合函数的单调性.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,结合复合函数单调性“同增异减”的原则,可得答案.【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.【点评】本题考查的知识点是复合函数的单调性,对数函数的图象和性质,二次数函数的图象和性质,难度中档.31.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文14))已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.【答案】见解析。【考点】3K:函数奇偶性的性质与判断;3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中当x∈(﹣∞,0)时,f(x)=2x3+x2,先求出f(﹣2),进而根据奇函数的性质,可得答案.【解答】解:∵当x∈(﹣∞,0)时,f(x)=2x3+x2,∴f(﹣2)=﹣12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=12,故答案为:12【点评】本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.32.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文10))下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y= 【考点】4K:对数函数的定义域;4L:对数函数的值域与最值.【专题】11:计算题;4O:定义法;51:函数的性质及应用.【分析】分别求出各个函数的定义域和值域,比较后可得答案.【解答】解:函数y=10lgx的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求;故选:D.【点评】本题考查的知识点是函数的定义域和值域,熟练掌握各种基本初等函数的定义域和值域,是解答的关键.33.(2022年普通高等学校招生统一考试新课标Ⅱ卷数学(文12))已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=()A.0 B.m C.2m D.4m 【考点】&2:带绝对值的函数;&T:函数迭代;3V:二次函数的性质与图象.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据已知中函数函数f(x)(x∈R)满足f(x)=f(2﹣x),分析函数的对称性,可得函数y=|x2﹣2x﹣3|与y=f(x)图象的交点关于直线x=1对称,进而得到答案.【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,故函数y=|x2﹣2x﹣3|与y=f(x)图象的交点也关于直线x=1对称,故xi=×2=m,故选:B.【点评】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档.34.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(文7))下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x) B.y=ln(2﹣x) C.y=ln(1+x) D.y=ln(2+x) 【考点】3A:函数的图象与图象的变换.【专题】35:转化思想;51:函数的性质及应用.【分析】直接利用函数的图象的对称和平移变换求出结果.【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.【点评】本题考查的知识要点:函数的图象的对称和平移变换.35.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(文9))函数y=﹣x4+x2+2的图象大致为()A. B. C. D. 【考点】3A:函数的图象与图象的变换.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x>或﹣<x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.36.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(文16))已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=.【答案】见解析。【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】利用函数的奇偶性的性质以及函数值,转化求解即可.【解答】解:函数g(x)=ln(﹣x)满足g(﹣x)=ln(+x)==﹣ln(﹣x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(﹣x)+1,f(a)=4,可得f(a)=4=ln(﹣a)+1,可得ln(﹣a)=3,则f(﹣a)=﹣ln(﹣a)+1=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查奇函数的简单性质以及函数值的求法,考查计算能力.37.(2022年普通高等学校招生统一考试新课标Ⅲ卷数学(文12))已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B. C. D.1 【考点】52:函数零点的判定定理.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(ex﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.【解答】解:因为f(x)=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年沪科版选择性必修1化学下册阶段测试试卷
- 二零二五年金融机构安全保卫服务合同2篇
- 专项油漆工种分包协议2024版示例版B版
- 二手房交易杭州2024年协议典范版B版
- 2025年北师大版高三生物上册月考试卷含答案
- 2025年人教A版高二地理下册阶段测试试卷
- 2025年华师大版八年级物理上册阶段测试试卷含答案
- 2025年中图版三年级语文上册月考试卷含答案
- 二零二五年度立体广告牌制作与安装协议3篇
- 2025年外研版五年级英语上册月考试卷
- 宝马Z4汽车说明书
- 高周波基础知识培训教材课件
- 物流管理与工程案例
- 2023年05月江苏省宿迁市工会系统公开招考社会化工会工作者笔试题库含答案解析
- 油缸使用说明(中英)
- 2023年近年中医基础理论考博真题
- GB/T 20984-2022信息安全技术信息安全风险评估方法
- 现场制氮气举作业方案及技术措施
- GB/T 10001.4-2021公共信息图形符号第4部分:运动健身符号
- 付款操作流程图
- 基于协同过滤算法的电影推荐系统设计
评论
0/150
提交评论