版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015年丽水市高中数学比赛试题一、选择题:本大题共10小题,每题5分,共50分.1.已知x0为函数fxlog1x3x的零点,则2A.x01,1B.x01,1C.x01,1D.x01,154433222.函数ylog1x23x2的单一递加区间为2.已知会合的值为
,3B.1,3C.3,D.3,22222Axx22a4xa0,Bxx2b,若AB0,3,则abA.1B.2C.4D.54.将函数y3sin2xco2sx的图象向右平移0个单位可获得函数y3sin2xco2sx的图象,则的最小值为A.12B.C.4D.63R,不等式asinxbcosx1恒建立”,5.命题:“ab”;命题Q:“对随意的xP1则P是Q的A.充分不用要条件B.必需不充分条件C.充分必需条件D.既不充分也不用要条件6.已知函数fxsinx0,0在,上单一递加,则当获得最大值43时,的最小值为A.3C.5B.D.22447.已知an是首项a11,公差为d的等差数列,其前n项和为Sn,若S7Snmin,则公差d的取值范围是A.13,1B.2,2C.1,1D.13,15366573636494x2y208.已知实数x,y知足条件xayb0,zxy的最大值、最小值分别为M、m,x0且Mm1,则ab的取值范围为A.332,3B.1,1C.63,1D.1,23222222109.若直线y2xa与曲线yx3ax1从左到右依次交于A,B,C三点,且AB2BC,则知足条件的实数a的个数为A.0个B.1个C.2个D.3个10.已知ABC的三个内角A、B、C所对的边分别为a、b、c,且A、B、C知足条件cossinAsincosBsinsinC,有以下四个结论:①acb;②abc;③cba;④cab,有可能建立的是A.①②B.③④C.①③D.②④二、填空题:本大题共7小题,每题7分,共49分.11.已知正数x,y知足x21,则1y2y的最小值为_______.x12.若log23log34log45lognn15,则n___________.13.已知数列an知足:a11,a22,anan1an2anan1an2nN,数列an的前n项和为Sn,则S2015______________.x1;1x2114.已知函数fxx;的定义域为1,2015,则方程fxfx2的全部根之22和为______.15.已知fxabcosx2,f122,则f12___________.x1216.已知Mx,y0yx11,若x,yM,则zx22xy2y22y的最小值为___________.17.已知A、B、C是半径为1的圆O上的三点,AB为圆O的直径,P为圆O内一点(含圆周),则PAPBPBPCPCPA的取值范围为_____________________.三、解答题:本大题共3小题,每题17分,满分51分.18.已知数列an知足a12,an12an2n1nN.an为等差数列,并求通项公式an;(1)求证2n(2)求数列an的前n项和Sn.19.已知ABC的三个内角A、B、C所对的边分别为a、b、c,ABC的面积为S,43S31a2b2c2.求角C的取值范围;(2)若c1,求ABC周长y的最小值.20.已知函数
fx
xx
aa
0(1)不等式
fx
1在
0,n上恒建立,当
n获得最大值时,求
a的值;(2)在(1)的条件下,若关于随意的
xR,不等式
fx
t
fx
tt
0
恒建立,求t的取值范围.答案:一、选择题:CDDBAADCCD剖析:1、f10,f10,应选C322、函数的定义域为1,2,且ylog1t为单一递减函数,又tx23x2的单2调递减区间为3,2,应选D23x0是方程x22a4xa0的根,则a0,A4,0不合题意。、若故x0为x2b的根,b2,B0,4,x3为方程x224xa0a的根,a3,应选D4、y3sin2xcos2x2sin2x,6y3sin2xcos2x2sin2x,应选Bb65、“对随意的xR,不等式asinxbcosx1恒建立”Q22恒建立a2b21Pabsinx1oa由图可知,PQ,应选A6、由已知T122341212又122k2k7,应选A2min422S7S67、由已知S7S8615d721d615d828d721d828d131d6131536d1536,应选Dd4949b0xyz8、由已知,11ya2Ay2xAb,2bxayb0由ayb01oxx2a12ambB12ay2xBb,2bM3b由ayb01,x2a12a12a由Mm3bb1b4a2112a12a4a1ab2a13131a1363,1,应选C4a2229、由y2xa得x3a2x1a01,设A,B,C三点的横坐标yx3ax1分别为x1,x2,x3x1x2x3,则方程1可化为xx1xx2xx30x2x12x3x22x1x2x303,由2,3得x15x2,代入3,4得x1x2x2x3x1x3a24x34x2x1x2x31a521x221a220x2321x2210x214x215x21020x23ax15x11x1541不合题设,舍去,119或11x21或x2或x2a,应选Cx344516x31x34510、sinA0,1,cosB1,1,cossinA0,sincosB0cosB0,1,B为锐角由sincosBcossinAsin2sinAcosB2sinAsinAcosB2sinBcosBsinAsinBab2由sincosBsinsinCcosBsinC(1)若BC,则A22cosBsinA12B,abc2224(2)若CB,则C为钝角,cab2答案:D二、填空题:11、9;12、31;13、4029;14、614115、6;216、1;17、4,453剖析:11、11229,x12y2yx52xy3时取到等号xxyxyy312、log23log34log45lognn1log2n15n3113、由递推关系,数列各项为:1,2,3,1,2,3,,,S201512367112402914、方程的根为3,3,6,,形成公比为2的等比数列,第n个根为32n1,由2232n12015n11,全部根的和为:31222210614122215、fxabcosx2absinx12,fx的图像能够x112x2由奇函数absinx向右平移一个单位,向下平移两个单位获得,fx的图像关yx2于1,2对称,f12f124,f126216、由已知:yx2y0y1,z5y22y5y1115551答案:517、解:设G为ABC的重心,则PAPBPBPCPCPAGAGPGBGPGBGPGCGPGCGPGAGPGAGBGBGCGCGA2GAGBGCGP23GPGAGBGBGCGCGA23GP1a2b2c23GP26424,43GP33答案:4,43三、解答题:18、(1)由已知得:an1an1an1an1,an是以a11为首项,以d12n12n2n12n2n2为公差的等差数列;,,,,,,,,,,,,,,,,,,,,,,,,,5annann2n,,,,,,,,,,,,,,,,,,,,,,,82n(2)Sn121222323n12n1n2n2Sn122223n22n1n12nn2n1两式相减得:Sn222232n12nn2n11n2n12Snn12n12,,,,,,,,,,,,,,,,,,,,,,,,1719、(1)由已知:23absinC3a2b22abcosC2ab3sinCcosC4absinC63a2b2,,,,,,,4sinC63a2b223ab3,,,,,,,,,,,,,64ab4ab2C2C,,,,,,,,,,,,,,,,,,836362(2)由(1):3a2b223sinC2cosCab又:1a2b22abcosCa2b23sinCcosC3sinC13cosC113,,,,,,,,,,,,,,2ab3sinC13cosC3sinC2cos2C33sinCcosCcosCsin2Cab222223sinC13cosCCC2C2C213sin3sincoscos2222tanC2tan2CC3tanC31131tan2213222223tanC131tan2C31tan2C23tanC132222123,,,,,,,,,,,,,,,151tan2C3tanC32132212321tan23423tan413y12,,,,,,,,,,,,,,,,,,,,,,,,,,,,,17a2a2x2axx;xay20、(1)解一、fxxxa24a2a2x2axx;xa24当a21,即0a2时,由x2ax1oax4aa24naa2412解得x2,2当a21,即a2时,由x2ax1解得xaa24,42naa24212aa24nmax12,此时a2,,,,,,,,,,,,,,,,,,,,y81解二、不等式fx1xax1由图可知,当yxa与y相切时,x1n能取到最大值,由xa得x2ax10,oanxxa240a2,,,,,,,,,,,,,,,8(2)解一:fxtfxtxtxt2xx2t0当x2时,2222230恒建立,xtxtxxttxtttt对随意t0原不等式在2,上恒建立。,,,,,,,10当2tx2时,xtxt2xx2t2x22(t2)xt2t0当2t2t即0t2时,22t22t22tt2tt2t021t2时,不等式恒建立当2t2t即t2时,22t22tt22tt2tt22022222不等式恒建立当t1时原不等式在2t,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度生物医药制品研发与临床试验合同
- 经纪人合同三篇
- 2024年农村小产权房屋转售合同3篇
- 2024年度金融服务合同包含贷款额度与利率规定2篇
- 2024年建筑施工木材材料供应合同3篇
- 2024年度福建海域使用权转让合同
- 秋季学期实践教学方案计划
- 旅游诚信服务:导游行为承诺书
- 2024年度高校教师继续教育与聘用合同2篇
- 二零二四年楼顶篮球场租赁合同:体育活动与使用权协议3篇
- GB/T 41781-2022物联网面向Web开放服务的系统安全要求
- 2022年中国烟草行业信息化市场分析
- 超滤+反渗透设计方案
- 加油站年度应急预案演练计划
- 广东省综合评标专家库试题
- 外科学课件-阑尾炎
- 中学增量绩效奖励发放实施方案
- DB13(J)∕T 100-2016 建设工程安全文明工地标准
- 词汇专项训练
- 小水电站运行安全风险隐患排查整治实施方案
- 部编版七年级上册道德与法治全册教案(完整版)教学设计含教学反思
评论
0/150
提交评论