广东省汕头市潮南区中考数学一模试卷_第1页
广东省汕头市潮南区中考数学一模试卷_第2页
广东省汕头市潮南区中考数学一模试卷_第3页
广东省汕头市潮南区中考数学一模试卷_第4页
广东省汕头市潮南区中考数学一模试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020年广东省汕头市潮南区中考数学一模试卷中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共分)1.的倒数是()A.2019B.C.D.2.据民政部网站信息截止2018年终,我国60岁以上老年人口巳经达到2.56亿人.其中2.56亿用科学记数法表示为()A.×107B.10×8C.×l09D.×l010如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.4.以下变形属于因式分解的是()A.4x+x=5xB.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2-3x=x(x-3)5.以下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.正六边形C.正方形D.圆6.不等式组的解为()D.x≥5或x≤-A.x≥5B.x=-1C.-1≤x≤51已知直线l1∥l2,一块含30°角的直角三角板以下列图放置,∠1=35°,则∠2等于()A.25°B.35°C.40°D.45°8.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则()A.m=4B.m=2C.m=2或m=-2D.m=-2在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE:S四边形BCED的值为()4:94:214:25第1页,共17页2020年广东省汕头市潮南区中考数学一模试卷D.4:5如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则以下列图象能反响y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.若分式有意义,则x的取值范围为______.12.______同时扔掷两枚硬币,恰好均为正面向上的概率是.如图,⊙O的弦AC与半径OB交于点D,BC∥OA,AO=AD,则∠C的度数为______°.2y14.已知|x-2y|+(y-2)=0,则x=______.15.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴成立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为______.16.将一些形状相同的小五角星以以下列图所示的规律摆放,据此规律,第10个图形有______个五角星.第2页,共17页2020年广东省汕头市潮南区中考数学一模试卷三、计算题(本大题共2小题,共13.0分)17.先化简,再求值:÷(-),其中a=+2.18.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每个月可卖64支;每涨价3元,每个月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每个月盈利最大?最大利润是多少元?四、解答题(本大题共7小题,共53.0分)19.计算:+(π-2019)0-(-)-2-4cos30°如图,△ABC中,AB=AC=10,BC=16.点D在边BC上,且点D到边AB和边AC的距离相等.(1)用直尺和圆规作出点D(不写作法,保留作图印迹,在图上注明出点D);(2)求点D到边AB的距离.第3页,共17页2020年广东省汕头市潮南区中考数学一模试卷21.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的地址上,点C恰好落在边AD上的点G处,连接EG.1)△GEF是等腰三角形吗?请说明原由;2)若CD=4,GD=8,求HF的长度.22.某校积极睁开“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为认识学生最喜欢哪一种项目,随机抽取了部分学生进行检查,并绘制了以下的条形统计图和扇形统计图(部分信息未给出).1)求本次被检查的学生人数;2)补全条形统计图;3)该校共有3000名学生,请估计全校最喜欢篮球的人数比最喜欢足球的人数多多少?第4页,共17页2020年广东省汕头市潮南区中考数学一模试卷已知二次函数y=ax2+bx-3a经过点A(-1,0)、C(0,3),与x轴交于另一点B,抛物线的极点为D.1)求此二次函数解析式;2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上可否存在点P,使得△PDC为等腰三角形?若存在,求出吻合条件的点P的坐标;若不存在,请说明原由.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.第5页,共17页2020年广东省汕头市潮南区中考数学一模试卷25.如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,极点P恰幸好AD上,直线PE、PF分别交直线AC于点G、H.1)求△PEF的边长;2)若△PEF的边EF在线段CB上搬动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上搬动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不行立,直接写出你发现的新结论.第6页,共17页2020年广东省汕头市潮南区中考数学一模试卷答案和解析【答案】C【解析】【解析】直接利用倒数的定义进而得出答案.此题主要观察了倒数,正确掌握倒数的定义是解题要点.【解答】解:-2019的倒数是:.应选:C.【答案】B【解析】解:将2.56亿用科学记数法表示为2.56×108.应选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a<10,n为整数.确定n的值时,要看把原数变成a时,小数点搬动了多少位,n的绝对值与小数点搬动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a<10,n为整数,表示时要点要正确确定a的值以及n的值.【答案】A【解析】解:它的左视图是应选:A.从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,据此可得.观察三视图的知识;左视图是从几何体左面看获取的平面图形.【答案】D【解析】解:A、是整式的计算,不是因式分解,故本选项错误;B、右侧不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、吻合因式分解的定义,故本选项正确.应选:D.把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.此题观察了因式分解的意义,属于基础题,掌握因式分解的定义是要点.【答案】A【解析】解:等边三角形是轴对称图形但不是中心对称图形,A正确;正六边形是轴对称图形,也是中心对称图形,B错误;正方形是轴对称图形,也是中心对称图形,C错误;圆是轴对称图形,也是中心对称图形,D错误;应选:A.依照中心对称图形与轴对称图形的看法判断即可.第7页,共17页2020年广东省汕头市潮南区中考数学一模试卷此题观察的是中心对称图形与轴对称图形的看法:轴对称图形的要点是搜寻对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要搜寻对称中心,旋转180度后与原图重合.6.【答案】B【解析】【解析】此题观察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的要点.分别求出每一个不等式的解集,依照口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2-x≥3,得:x≤-1,解不等式x-1≥-2,得:x≥-1,则不等式组的解为x=-1.应选:B.【答案】A【解析】解:∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+35°=65°,l1∥l2,∴∠3=∠4=65°,∵∠4+∠EFC=90°,∴∠EFC=90°-65°=25°,∴∠2=25°.应选:A.先依照三角形外角的性质求出∠3的度数,再由平行线的性质得出∠4的度数,由直角三角形的性质即可得出结论.此题观察的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.【答案】D【解析】解:依照题意知,解得m=-2,应选:D.依照常数项为0可得m2-4=0,同时还要保证m-2≠0,再解即可.此题主要观察了一元二次方程的一般形式,要点是掌握ax2+bx+c=0(a,b,c是常数且2a≠0)特别要注意a≠0的条件.这是在做题过程中简单忽视的知识点.在一般形式中ax叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【答案】B【解析】解:∵DE∥BC,∴△ADE∽△ABC,=()2,∵,第8页,共17页2020年广东省汕头市潮南区中考数学一模试卷=,=,∴=,应选:B.依照相似三角形的判断与性质即可求出答案.此题观察相似三角形,解题的要点是熟练运用相似三角形的判断与性质,此题属于中等题型.10.【答案】D【解析】解:(1)过点Q作QD⊥AB于点D,①如图1,当点Q在AC上运动时,即0≤x≤3,由题意知AQ=x、AP=x,∵∠A=45°,∴QD=AQ=x,则y=?x?x=x2;②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,由题意知BQ=6-x、AP=AB=3,∵∠B=45°,∴QD=BQ=(6-x),则y=×3×(6-x)=-x+9;应选:D.作QD⊥AB,分点Q在AC、CB上运动这两种情况,由直角三角形的性质表示出QD的长,利用三角形面积公式得出函数解析式即可判断.此题主要观察动点问题的函数图象,解题的要点是依照题意弄清两点的运动路线,据此分类谈论并得出函数解析式.11.【答案】x≥-1且x≠2第9页,共17页2020年广东省汕头市潮南区中考数学一模试卷【解析】解:由题意得:x+1≥0,且x-2≠0,解得:x≥-1且x≠2,故答案为x≥-1且x≠2.依照二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.此题观察了二次根式有意义的条件以及分式有意义的条件,用到的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.【答案】【解析】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,∴恰好均为正面向上的概率是,故答案为:.画树状图显现全部4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,尔后依照概率公式求解.此题主要观察了列表法与树状图法求概率,列表法可以不重复不遗漏的列出全部可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所讨情况数与总情况数之比.【答案】36【解析】解:∵BC∥OA,AO=AD,∴∠AOD=∠ODA,∠AOD=∠B,∵∠BDC=∠ODA,∴∠B=∠BDC,∵∠AOD=2∠C,∴∠B=∠BDC=2∠C,∵△BDC的内角和是180°,2∠C+2∠C+∠C=180°,解得:∠C=36°,故答案为:36°.由BC∥OA,AO=AD,依照平行线的性质、等腰三角形的性质以及圆周角定理,可得出∠C与∠B的关系,尔后由三角形内角和的求得答案.此题观察了圆周角定理以及平行线的性质.注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是要点.14.【答案】16【解析】解:依照题意得,x-2y=0,y-2=0,解得x=4,y=2,y2因此,x=4=16.故答案为:16.依照非负数的性质列式求出x、y,尔后相乘即可得解.此题观察了非负数的性质:几个非负数的和为0时,这几个非负数都为0.第10页,共17页2020年广东省汕头市潮南区中考数学一模试卷【答案】【解析】【解析】此题观察了旋转的性质,等腰直角三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,表示出阴影部分的面积等于两个扇形的面积的差是解题的要点,难点在于求出旋转角的度数.依照等腰直角三角形的性质求出AB,再依照旋转的性质可得A′B=AB,尔后求出∠OA′B=30°,再依照直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′-S△ABC-S扇形CBC′=S扇形ABA′-S扇形CBC′,尔后利用扇形的面积公式列式计算即可得解.【解答】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=AC=2,∵△ABC绕点B顺时针旋转点A在A′处,BA′=AB,BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′-S△ABC-S扇形CBC′=S扇形ABA′-S扇形CBC′=-π-ππ.故答案为π.【答案】120【解析】解:第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为n(n+1)+n.故第10个图形中小五角星的个数为10×11+10=120个.故答案为120.解析数据可得:第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为(nn+1)+n.故第10个图形中小五角星的个数为10×11+10=120个.此题是一道找规律的题目,这类题型在中考中经常出现.关于找规律的题目第一应找出哪些部发散生了变化,是依照什么规律变化的,并从已知的特别个体推理得出一般规律.即可解决此类问题.第11页,共17页2020年广东省汕头市潮南区中考数学一模试卷17.【答案】解:÷(-),=÷,=÷,=?,.当a=+2时,原式==1+2.【解析】原式括号中两项通分并利用同分母分式的减法法规计算,同时利用除法法规变形,约分获取最简结果,将a的值代入计算即可求出值.此题观察了分式的化简求值,熟练掌握运算法规是解此题的要点.18.【答案】解:(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,依照题意,得:,解得:,答:文具店购进A种钢笔每支15元,购进B种钢笔每支20元;(2)设B种钢笔每支售价为x元,每个月获取的总利润为W,则W=(x-20)(64-12×)=-4x2+264x-36802=-4(x-33)+676,∵a=-4<0,∴当x=33时,W获取最大值,最大值为676,答:该文具店B种钢笔销售单价定为33元时,每个月盈利最大,最大利润是676元.【解析】(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,依照“购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元”列二元一次方程组求解可得;2)设B种钢笔每支售价为x元,依照“总利润=每支钢笔的利润×销售量”列出函数解析式,将其配方成极点式,再利用二次函数的性质求解可得.此题主要观察二次函数的应用与二元一次方程组的应用,解题的要点是理解题意,找到题目中包括的相等关系,并据此列出方程和函数解析式及二次函数的性质.19.【答案】解:原式=2+1-9-2=-8【解析】依照二次根式的性质,零指数幂,负指数幂,特别角的三角函数值计算即可.此题观察二次根式的性质,零指数幂,负指数幂,特别角的三角函数值等知识,解题的要点是熟练掌握基本知识,属于中考常考题型.20.【答案】解:(1)作∠A的角均分线(或BC的垂直均分线)与BC的交点即为点D.第12页,共17页2020年广东省汕头市潮南区中考数学一模试卷2)∵AB=AC,AD是∠A角均分线∴AD⊥BC,垂足为D,∵BC=16,BD=CD=8,∵AB=10,在Rt△ABD中,∴依照勾股定理得AD=6,设点D到AB的距离为h,则×10h=8×6×,解得h=4.8,因此点D到边AB的距离为.【解析】(1)作∠A的角均分线(或BC的垂直均分线)与BC的交点即为点D.(2)利用三角形的面积公式成立方程即可解决问题.此题观察作图-复杂作图,角均分线的性质,等腰三角形的性质,三角形的面积等知识,解题的要点是熟练掌握基本知识,属于中考常考题型.【答案】解:(1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8-x),222在Rt△FGH中,x+4=(8-x),解得x=3,HF的长为3.【解析】(1)依照平行线的性质以及折叠的性质,即可获取∠GFE=∠GEF,进而得出△GEF是等腰三角形.(2)设HF长为x,则GF长为(8-x),在Rt△FGH中,依照勾股定理可得x2+42=(8-x),即可获取HF的长度.此题主要观察的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的要点.22.【答案】解:(11025%)观察条形统计图与扇形统计图知:喜欢跳绳的有人,占,故总人数有10÷25%=40人;2)喜欢足球的有40×30%=12人,喜欢跑步的有40-10-15-12=3人,故条形统计图补充为:第13页,共17页2020年广东省汕头市潮南区中考数学一模试卷(3)全校最喜欢篮球的人数比最喜欢足球的人数多3000×=225人.【解析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被检查的总人数;2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,进而补全条形统计图;3)用样本估计整体即可确定最喜欢篮球的人数比最喜欢足球的人数多多少.此题观察了扇形统计图、条形统计图及用样本估计整体的知识,解题的要点是可以读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.【答案】解:(1)∵二次函数y=ax2+bx-3a经过点A(-1,0)、C(0,3),∴依照题意,得,解得,∴抛物线的解析式为y=-x2+2x+3.(2)由y=-x2+2x+3=-(x-1)2+4得,D点坐标为(1,4),22定义抛物线y=-x+2x+3.令y=0,-x+2x+3=0,解得x=-1或3,∴A(-1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=-x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),依照勾股定理可得P1C2=x2+3-y)2,P1D2=(x-1)2+(4-y)2,2222因此x+(3-y)=(x-1)+(4-y),即y=4-x.又P1点(x,y)在抛物线上,2∴4-x=-x+2x+3,第14页,共17页2020年广东省汕头市潮南区中考数学一模试卷即x2-3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4-x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴吻合条件的点P坐标为(,)或(2,3).【解析】(1)将A(-1,0)、B(3,0)代入二次函数y=ax2+bx-3a求得a、b的值即可确定二次函数的解析式;2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判断即可;(3)分以CD为底和以CD为腰两种情况谈论.运用两点间距离公式成立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,观察了它们存在的条件,有必然的开放性.【答案】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,=,2EC=DE?AE,2∴(2)=2(2+AD),第15页,共17页2020年广东省汕头市潮南区中考数学一模试卷(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD?tanA=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.【解析】(1)连接OD,由CD获取∠ADB=90°,等量代换获取=∠A,即可获取结论;

是⊙O切线,获取∠ODC=90°,依照AB为⊙O的直径,∠BDC=∠ADO,依照等腰三角形的性质获取∠ADO(2)依照垂直的定义获取∠E=∠ADB=90°,依照平行线的性质获取∠DCE=∠BDC,依照相似三角形的性质获取=,解方程即可获取结论;(3)利用三角函数求得∠DCE的度数,依照△AEC∽△CED,求得∠A的度数,则∠DIB即可求得,尔后在直角△ABD中求得BD,进而求得半径,尔后利用弧长公式求解.此题观察了切线的性质、相似三角形的判断与性质以及特别角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论