![计量经济学中加合作教学课件_第1页](http://file4.renrendoc.com/view/4f235f1b1c22a38942f63b7583dd884e/4f235f1b1c22a38942f63b7583dd884e1.gif)
![计量经济学中加合作教学课件_第2页](http://file4.renrendoc.com/view/4f235f1b1c22a38942f63b7583dd884e/4f235f1b1c22a38942f63b7583dd884e2.gif)
![计量经济学中加合作教学课件_第3页](http://file4.renrendoc.com/view/4f235f1b1c22a38942f63b7583dd884e/4f235f1b1c22a38942f63b7583dd884e3.gif)
![计量经济学中加合作教学课件_第4页](http://file4.renrendoc.com/view/4f235f1b1c22a38942f63b7583dd884e/4f235f1b1c22a38942f63b7583dd884e4.gif)
![计量经济学中加合作教学课件_第5页](http://file4.renrendoc.com/view/4f235f1b1c22a38942f63b7583dd884e/4f235f1b1c22a38942f63b7583dd884e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AReviewofProbabilityandAReviewofProbabilityandI.SomePopulation(总体)thesetofallpossiblerandom,orchance,experimente.g.allthestudentsinthis ):eachunitinthee.g.eachstudentinthissampling(随机抽样)fromapopulatione.g.asampleof20studentsbyrandomsamplingfromthisRandomRandomVariablerv)orStochasticVariable(量):anumericaldescriptionofthe experiment(denotedbyX,Y,Z,etc,andthevaluestakenbythemaredenotedbyx,y,z,etc).e.g.X:EconometricsgradesofallthestudentsinthiscanconsiderapopulationasarandomCanconsidersampleasasetofsomeobservations(观测值)inthispopulation3(1).Discreterv(离散型随 finite(orcountablyinfinite)sequenceofvalues.Example: eofthrowing(2).Continuousrv(连续型随 anyvalueinsomeintervalofvalues.Example:heightofpeople,mosteconomic4likelihoodthataneventwilloccurProbabilitydistribution(PD)(概率分布):Athevaluesthatarandomvariablecanassume.:afunctiontodescribeprobabilitydistributionofX,denotedbyf(x).Fordiscreterv:f(x)=P(X= fori=1,2,= forX5P(axb)fExample:ExpectedvalueandvarianceforthenumberofExample:ExpectedvalueandvarianceforthenumberofcarssoldduringadayatDicarloMotorsjTargetofStatistic:Ifapopulationisunknown,getasamplebyrandomsamplingfromitandthenusesampleinformationtoinferinformation(mainlyProbabilitydistribution)ofthisunknownpopulation.Jointpointofsampleandpopulation:Probabilitydistribution(PD),becausePDofasamplefromapopulationisthesameasthatofthispopulationusesamplePDtoinferpopulation7Thenumericalfeaturesofapopulation(orrandomvariable)PDareoftendescribedusingitsprobabilitycovarianceandcorrelationcoefficient(computedfromprobabilitydensityfunction).8--measuresofvariabilityor9(1)ExpectedValue(orexpectation,mean):ameasureofthecentrallocationforrvX,denotedbyE(X)ororxFordiscreteE(X)xjf(xjjE(X)xf(2)Variance:(2)Variance:measureshowfaraparticularvalueoftherandomvariableisfromtheexpectedvalueorE(X).Var(X)E(XFordiscretevariable,givenX{x1,x2,...,xkVar(X)(xj)f(xjForcontinuousvariable,Var(X)(X)2fsd(X)Var(X)012345Var(XVar(X)(xj)f(x)jsd(X)1.25f0123465Cov(X,Y)xyE[(Xx)(YyCov(X,Y)E(XYxYXyxyE(XY)E(xY)E(Xy)E(xyE(XY)xwhichisoftenusedtocalculatePropertiesPropertiesofIfX,Yareindependentrvs,Cov(X,Y)=0becauseE(XY)=E(X)E(Y)ButifCov(X,Y)=0,cannotsayX,YareindependentrvsIfY=X2,YandXarenotindependentButifE(X)=x=0,E(X3)=0Cov(X,Y)=E[(Xx)(X2x2)]=E(X3)=Ifa1,b1,a2,b2areCov(a1X+b1,a2Y+b2)=(3)|Cov(X,Y)|Correlationcoefficient:anumericalmeasureoflinearassociationbetweentwovariablesCorr(X,Y) Cov(X,Y Cov(X,Y)=0Corr(X,Y)=–1Corr(X,Y)+1indicateaperfectpositiveassociation,–1indicatesaperfectnegativeassociationGivenconstantsa1,b1,a2,b2Ifa1a2>0,Corr(a1X+b1,a2Y+b2)=Corr(X,Y)Ifa1a2<0,Corr(a1X+b1,a2Y+b2)=–Corr(X,Y)PropertiesPropertiesofExpectedForanyconstant常数)cE(ccE(cXcE(X)Foranyconstantsaandb,E(aX+b)=aE(X)+If{a1,a2,…,an}areconstantsand{X1,X2,…,Xn}arerandomvariables,thenE(a1X1+a2X2+…+anXn)=a1E(X1)+a2E(X2)+…+EaiXiaE(XIfeacha1,E E(X(4)IfX,Yareindependentrvs,E(XY)=Foraconstantc,Var(c)=0,Var(cX)=Ifaandbareconstants,Var(aX+b)=Var(X)=E(X–)2=E(X2+2=E(X2)+E(2)–2E(X)==E(X2)whichisoftenusedtocalculatesd(c)=sd(aX+b)=PropertiesofPropertiesofVar(aX+bY)=a2Var(X)+b2Var(Y)+2abCov(X,Y)IfXandYarenotcorrelated,Cov(X,Y)=0Var(XY)=Var(X)+If{X1,X2,…,Xn}arepairwiseuncorrelatedrandomvariablesand{ai:i=1,2,…,n}areconstants,=a1Var(X1)+a2Var(X2)+…+anVar(Xn)22Varna iiaVar(XiIfeachai1,VarXVar(XniiiitheconditionalexpectedvalueofYonXE(Y|X)(orconditionalexpectation,conditionalmean)fordiscretervY{y1,y2,...ym},E(Y|X)yjfY|X(yjY=a+bX+E(Y|X)=E[(a+bX+cX2)|X]=a+bX+Note:IfXtakesaspecialvaluexi,E(Y|xi)isaPropertiesPropertiesofConditionalExpectedForanyfunctionc(X),E[c(X)|X]=Forfunctiona(X)and=a(X)E(Y|X)+IfX,Yareindependentrvs,E(Y|X)=AspecialIfX,UareindependentrvsandE(U)=0E(U|X)=E(U)=0E[E(Y|X)]=E(Y|X)=E(Y)Cov(X,Y)=IfXdoesnotchangetheexpectedvalueofY,thenXandYmustbeuncorrelatedifXandYarecorrelated,thenE(Y|X)mustdependonX. TheconverseofProperty5isnottrue:ifXandYareuncorrelated,E(Y|X)couldstilldependonX.ifE(X)=0,E(X3)=0,Y=X2,thenCov(X,Y)=ButnowE(Y|X)=X2,E(Y|X)couldstilldependonVar(YX)E{[YE(Y|x)]2|IfX,Yareindependentrvs,Var(Y|X)=meanandstandarddeviation,X~N(,2) e(xu)/thehighestthehighestpointonthenormalcurveisattheThestandarddeviationdeterminesthewidthoftheThetotalareaunderthecurveforthenormalprobabilitydistributionis1FigureB.7:Bell-shapedAnormaldistributionwithameanofzeroandastandarddeviationofone. WhichisaspecialcaseofNormalPDF:(Z)eZPropertiesofPropertiesofNormalIfX~N(,2),then(X)/~N(0,X~N(3650050002)Z=(X-36500)/5000IfX~N(,2),thenaX+b~N(a+b,IfXandYarejointlynormallydistributed,thentheyareindependentifandonlyifCov(X,Y)=0.distributednormalrandomvariableshasanormalFromproperty4,wevariableshasanormalThatis,ifY1,Y2,…,YnareindependentrandomvariablesandeachfollowsnormaldistributionN(,2),Y∼N(,2/tdistributionTheFIV.IV.OtherDefinitionsonGivenasamplex={x1,x2,…,xn}fromapopulationxixn(xix)xixxinxxin(xin)i i i i i ixxnSampleStandardDeviation:thepositivesquarerootofthesamplevariancesExample:samplex={46,54,42,46,xxxxxi1 4654424632s(4644)2(5444)2(4244)2(4644)2(325=s64Example:Example:Calculationsforthesamplecovariancex3,yxxixyiyn1WhichisanunbiasedestimatorofpopulationE(Sxy)=xxiyi(xxi(yi(xix)(yiy2--111--43030904131931--2430-090418182--1500xixyiy99nssxxn1yyn120566rsxys Ch.1TheNatureofEconometricsCh.1TheNatureofEconometricsEconomic1WhatisEconometrics计量经济学abranchofevaluateand hefieldofEducation:effectofschoolspendingonstudentperformance.2MethodsMethodsinEconometricsstatisticalobservationaldata观测数据)--appearinsocial--appearinnatural 1.2Stepsin ysis GivenatopicinrealFormulatethequestionof izationQ=f(P,--less4ExampleExample1.2:Wagewage=f(educ,exper,wage:hourlywage,measureproductivityeduc:yearsofformaleducation,exper:yearsofworkingtraining:weeksspentinjobNote:Allthevariablesinthefinalmodelmusthaveavailabledata5--ucontainsunobservedfactorsinthewage=0+1educ+2exper+3training+uucontainsotherunobservedfactorsaffectingwage,background,etc.6y=0+1y=0+1x1+2x2+3x3+uy:wagehere数associatedwithx’srelationshipbetweenyandx’su:containsunobservedfactorsotherthanx’sthataffecty,7CollectdataforeachfactorStatisticalinference统计推断andtests估计和检验)andeconometricThegoalof estimatetheparameters’sinthemodeltesthypotheses假设aboutthese’s--thevaluesandsignsofthe’sdeterminethevalidityofaneconomictheoryandtheeffectsofcertainpolicies.8estimateestimateeconomictesteconomicevaluateandimplement ernmentandbusiness--and/91.3TheStructureofEconomicTypesofCross-SectionaldataTimeSeriesdataPooledCrossSectiondata(omitted)混合数Paneldata(omitted)Cross-sectionalCross-sectional--asampleofindividuals,households,firms,cities,states,countries,oravarietyofotherunits,takenatagivenpointininformationtakenatagivenpointintimeTable1.1:across-sectionaldataseton526workingindividualsfortheyear1976,inabbreviatedinthesample,showingtheorderofeconometricssoftwarepackagesassignanorderingofdatadoesnoteachotherTimeseriesconsistofobservationsonavariableorseveralvariablesforeachtimeperiodover–e.g.dailystockpricesin2004,GDPinthepast20yearsdatafrequency:Daily,weekly,monthly,quarterlyandkeykeyfeature:chronologicalorderingof observationsovertimearenotindependent,butarerelatedtotheirrecenthistoryTrends趋势andseasonalitywillbee.g.GDP,morecomplicated 1.41.4Causality因果关系andNotionofCeterisSimplyestablishingarelationshipbetweenyandxIneconometricmodel,whenstudyingtherelationshipbetweentwovariables,allotherrelevantfactorsmustbeheldfixed.ThenthisrelationshipcanoftenbeconsideredtobeExample1.4:MeasurethereturntoIfaischosenfromthepopulationandgivenanotheryearofeducation,byhowmuchwillhisherwageInthesimplestequation:wage=0+1educ+1:thereturntou:otherfactorsotherthaneducationaffectingwage,suchasworkingexperience,abilityceterisparibus:whenanotheryearofeducationisgiventothe,allotherfactorsotherthaneducationareassumedtobeheldfixed. whenanotheryearofeducationisgiventothe,allotherfactorsotherthaneducationnotbeheld--educationlevelsmaynotbeindependentlyofallotherfactorsaffectingwage:Ineconometricresearch,sometimesitmaybeCh.2:TheSimpleRegressionCh.2:TheSimpleRegressiony=0+1x+12.1DefinitionofTheSimpleRegressionGeneraldefinition:y=f(x,x:independentvariable,exnatoryvariableu:errorNotexactfunctionalrelationship,butstatisticalrelationshipbetweenyandx2ChapterChapter2beginswithsimplelinearregression(SLR)model,whichisnotoftenusedinappliedeconometrics,butisagoodstartpointforfurtherstudylater.3Thesimplelinearregressionifu=0,y=:“Runtheregressionofyonx”or“regressyonNote:inthistextbook,usey,x(notY,X)todenotefactors(variables)inthemodels.4MainlyMainlyyzeslopeparameter1,notintercept0Meansofinterceptwhenx=0,y=notmakesense,sincex0inmayaverageeffectofalltheotherfactorsotherthanxonyButalwaysincludeintercept0exceptincaseof0=0basedonstrongtheory.5Usuallywehavenoallinformationon(x,y)inthepopulation0,1anduareunobservedeveniftheyhavetoestimate0,1usingsampledataxandyfromthe6y=0+1x+uy:gradex:studyhoursperTheteacherisinterestedintheeffectofstudyhoursongrade,holdingotherfactorsfixed.ability,mathematicsbackground,etc.7fromE(u)=0andE(u|x)=averagevalueofunobservedfactorsinudoesdependonxcov(x,u)=Weassumetheunobservedfactors,suchasability,affectinggradeareunrelatedtostudyhoursandhaveanaverageofzerointhepopulationofallstudents.8ProblemProblem--wecanredefinetheinterceptinthisequationtomakeE(ability)=0orE(u)=0truey=0+1x+usupposethatE(u)0=y=(0+0)+1x+(uCallthenewerrore=u0,E(e)=Thenewinterceptis0+0,buttheslopeisstill1.themodelcanalwaysberewrittenwiththesameslope,butanewinterceptanderrorterm,wherethenewerrorhasazeroexpectedvalue.9Ifstudyhoursarechosenindependentlyofotherfeaturesofthestudents,theotherfactorswillnotdependonstudyHowever,ifstudent’sabilityincreasedwithmoretimespentonstudy,thentheexpectedvalueofuchangeswithstudyhours,ZeroConditionalMeanwillnotPopulationPopulationRegressionFunctionGiventheassumptionofZeroE(y|x)=E(0|x)+E(1x|x)+PRF:E(y|x)=0+measureonaverageinthepopulation,howychangewiththechangeinx0and1needtobeestimatedregressiony=0+1x+ [y=E(y|x)+Foreachindividualinthepopulation,howchangewiththechangeinxyincludetwocomponents:systematicpartofy:E(y|x)=0+1x,exinedbyxunsystematicpart,u,notexinedbyx.Example1:-{(xi,yExample1:-{(xi,yi):i=1,2,3,4}arethesampledataofgradesandstudyhoursfor4studentsfromthepopulationofthewholeclass)Givenanyx,thedistributionofPopulationregression2.22.2DerivingtheOrdinaryLeastSquares(OLS)y=0+1x+ThreeestimationmethodstoestimatePRF(and BasicideaofToestimatePRF(0and1)fromainfromthepopulation,thenforeachobservationthissample,itwillbethecaseyi=0+1xi+uiistheerrortermforobservationy1=0+1x1+u1y2=0+1x2+yn=0+1xn+yx48Populationregressionline,sampledatapointsandtheassociatederrortermsy: E(y|x)=0+ u } x:study useˆasestimatorofuseˆasestimatorof,ˆasestimatorof forobservationiinasample,givenxi,we1 1y: 1uˆyyˆyˆˆ 1 SRF:yˆˆ y3 .} û2 } x4 PRFandi PRF:E(yx)E(yxiiE(yx ˆ:estimatorof,ˆ:estimatorofxStudyGrantedthattheSRFisonlyanapproximationofPRF,givenasample,canwedevisearuleoraasThatis,theˆsinSRFshouldbeas“close”aspossibletotruevalues’sintherelevantPRFeventhoughwewillneverknowthe’sandPRF.y: uˆiyiyˆiyiˆˆmin } } StudyOLSmethod:fitasampleregressionlinethroughthesamplepointssuchthatthesumofsquaredresidualsisassmallasthetermofy=0+1xy=0+1x+ “regressyony: x:studyhoursper0and1,thenfittedvaluesofyandTheleast-squarescriterion最小二乘标准nMinuˆ2(yyˆ)2(yˆˆxi1 1yi,xiareknownsampleFirstordercondition(FOC)一阶条件 (ˆˆi2(yˆˆx)ˆ0(yˆˆx) 1 10 (ˆx i2(yˆˆx 1i(yx)x 1 1i thesameasequations(2.14)and(2.15),multipliedbyuˆi0,uˆixiˆyˆ xxyy ˆ x,y xprovidedthatxx0xˆˆ:OLSestimators最小二乘估计量ofSRF:yˆˆˆanduˆyEstimate估计值:aparticularnumericalvalueobtainedbytheestimatorinanspecificsample.yx48EXAMPLEEXAMPLE2.3:CEOSalaryandReturnonstudytherelationshipbetweenthismeasureoffirmperformanceandCEOcompensation,wethesimplesalary=0+1roe+u.x:theaveragereturnequity(roe)fortheCEO’sfirmforthepreviousthreeyears.(roeisdefinedintermsofnet easapercentageofcommonequity.)209CEOsfortheyear1990;thesedatawereobtainedfromBusinessWeek(5/6/91).UsingOLSmethodand(2.17)and(2.19),getsalˆary=963.191+18.501Ifroe=0,thepredictedsalaryistheinterceptsalˆary=WeWewillneverknowthePRF,sowecannotlhowclosetheSRFistothePRF.Anothersampleofdatawillgiveadifferentregressionline,whichmayormaynotbeclosertothePRF.YoucanusecomputersoftwarepackagetomakeestimationwithoutcomputingthembyhandThismodelmaybetoosimple,sincetherearemanyotherfactorsthataffectsalarybesidesroe.SRFbasedontwodifferent roe,MoreMoreyiyˆiuˆian Canproveyy2yˆy2 SSE SSTthetotalsumofsquaresSSE:theexinedsumofsquares解释平方SSR:theresidualsumofsquaresyiyTotalyi yˆiy Goodness-of-FitGoodness-of-FitR-squared(coefficientofdetermination判定系数):thefractionofthesamplevariationinycanbeR2=SSE/SST=1–0R2IfR2=1,allsamplepointsareonsampleregressionlineIfR2=0,poorfitofExample2.3:CEOSalaryandReturnonsalˆary=963.191+18.501n=209,R2=roeexinsonlyabout1.3%ofthevariationinsalariesforthissampleof209CEOs.Inthesocialsciences,lowR2inregressionequationsarenot mon,especiallyforcross-sectionalysis,anddon’tmeantheseSRFsarecannotuseR2tojudgewhetheraneconometricysisissuccessfulornotSmallexnatorypowermaybecausedbyotherfactors(inu)thatinfluencesalary. 2.5ExpectedValueandVarianceofOLS2.5ExpectedValueandVarianceofOLS and1thatappearinthepopulationstudypropertiesofthedistributionsofˆand Givenaparticularsample,they particularvalues.forsimplelinearregression.SLR.1:linearinparametersasy=0+1x+uSLR.2:userandomsampling,{(xi,yi):i=1,2,…,n},fromthepopulationmodelyi=0+1xi+SLR.3:E(u|x)=0E(ui|xi)=SLR.4:x’sarenotconstants. xixGiventheabove4 EourestimatoriscenteredaroundthetrueparameterE(ˆ)isE(ˆ|x),E(ˆ)isE(ˆ|x) UnbiasednessTheOLSestimatorsof1and0are E(ˆ),E(ˆ)Proofofunbiasednessdependsonour4assumptions–ifanyassumptionfails,thenOLSestimatorsisnotnecessarilyRememberunbiasednessisadescriptionoftheestimator–inagivensamplewemaybe“near”or“far”fromthetrueparameterˆ,ˆ 0 VarianceofVarianceoftheOLS--MeasurehowthesamplingdistributionofourestimatorspreadoutaroundthetrueparameteranadditionalassumptionVar(u|x)=2(Homoskedasticity同方差CanproveVar(u|x)=Var(u)--Var(u|x)isalsotheunconditionalvariance,calledtheerrorvariance误差项方差,thesquarerootoftheerrorvarianceiscalledthestandarddeviationoftheerrorterm误差项标准差alsohave:E(y|x)=0+Var(y|x)=Var(u|x)= 2 Var1(xix)2 SSTx(xix (xxisdˆ xVarˆisVarˆ|x,VarˆisVarˆ|x VarianceofOLSSlopeEstimatorˆ1Thelargertheerrorvariance,2,thelargerthevarianceoftheslopeestimatorThelargerthevariabilityinthexi,thesmallerthevarianceoftheslopeestimatorAsaresult,alargersamplesizeshoulddecreasethevarianceoftheslopeestimateProblem:theerrorvariance2isunknownbecausewedon’tobservetheerrortermsuiGivenSLR.1-ˆ21uˆ2SSR/n n2:degree dom(df)in(giventhe2restrictionsofOLSFOCsonuˆi x Similarly,cancomputeseˆ02.42.4UnitsofMeasurementandFunctionalEffectsofchangingunitofmeasureonOLSestimatorsExample2.3:salary=0+1roe+u. .1roedecroedecroe R2doesn'tchangeinboth unitsof therateofchangemeasuredinunitsofthe1unitsofInoriginalcase,ˆ1Ifxchangesbyoneunit,ychangesby$1000oIfx=0,yˆ=963.191i1000=Incase1,ˆ18,1Ifxchangesbyoneunit,1%,ychangesby$18,501Ifx=0,yˆ=$963,191Incase2,ˆ1Ifxchangesbyoneunit,ychangesby$10001850.10.01=$18,501Ifx=0,yˆ=963.191i1000=$963,191Thetworesultsareidenticalintheireffectsofxonyy=0+1x+y=0+1logx+logy=0+1x+or%y= TheMeaningof“Linear”--Linearityinthe’sappearwithapowerorindexof1onlyandismultipliedordividedbyanyother--mayormaynotbelinearinthey=0+1x2+y0+1xu,y0+1/0xu,y0+01xy=0+1 yisalinearfunctionof--xappearswithapowerorindexof1onlyandisnotmultipliedordividedbyanyothervariable.y0+1x,y0+1(x/z),y0+1(xByredefiningyandx,wecanturnsomemodelsy=0+1Modellinearin Modellinearin Note:LRM=linearregressionmodelNLRM=nonlinearregressionmodelExampleExample2.10:log-level(semi-Whenu=lety=log(wage),x=educ,alinearmodel,stillusen526,R2Here0doesnotmakeAnincreasingreturnoneducwithu=Example2.11:log-log(constant-CEOsalaryandfirmsalary/salary=1(or%salary=1%Ifsalesby1%,salaryby1lety=log(salary),x=log(sales),alinearmodel,stilluseOLSn209,R2Ch.3MultipleCh.3Multiple 1y=0+1x1+2x2+...kxk+thekfactorsthataffecty:xj(thek+1parameter:j(j=0,1,2,...,k)intercept0andslopeparameters1toku:errorterm,unobservable--allfactorsinuareuncorrelatedwithx’s(ceteris2MLR:MLR:y=0+1x1+2x2+...kxk+--morerealisticandflexiblethanSLR:y=0+1x1+Example:theeffectofeducationonhourlywage=0+1educ+2exper+ morerealisticthanSLR:wage=0+1educ+--morevariationinyisexIfuwage=1educ+2Example:aquadraticcons=0+1inc+2inc2+ cons=1inc+22inc--MLRmodelallowsformuchmoreflexibilityinfunctional3PRFandSRF(parallelwiththoseofPRF:E(y|x)=0+1x1+2x2+...SRF:yˆˆˆxˆx...ˆ 1 2 kuˆyyˆy(ˆˆxˆx...ˆx 1 2 kTerminology:“Regressyonx1,x2,…xk”or“runregressionofyonx1,x2,…xk”4uˆyyˆy(ˆˆxˆx...ˆx 1 2 kOLS:minuˆ2(yˆˆxˆx...ˆx 1 2i kFOCs 5n(yˆˆxˆx...ˆx) 1 2i kin1x(yˆˆxˆx...ˆx)i1 1 2i kx(yˆˆxˆx...ˆx) i2 1 2i k(yˆˆxˆx...ˆx)i1 1 2i ki1,2,...,nobservationj0,1,2,...,kdistinguishdifferentxand601 Note:nk7uy1x12x2...kxk holdingx2,...,xkfixed,y eachjmeasuresapartialeffect(ceterisparibus)ofxjony.1 2 k8thetotalsumofsquares(SST):yyithe inedsumofsquares(SSE):yˆyitheresidualsumofsquares(SSR):iSSTSSER2SSE/SST1 0R21thefractionofthetotalsamplevariationofythatisexinedbythemodel9Whenanotherxisaddedtoamodel,R2canneverdecreaseandusuallywillincrease(becausewhenanotherxisadded,SSRdoesnotincreaseandSSTdoesnotchange).Soitisnotagoodwaytocomparemodelsanddecidewhetheronexorseveralx’sshouldbeaddedtoamodelornot.--evenifsuchx’sarenotrelatedtoy,theycanstillincreaseR2Tomakesuchdecision,statisticaltestsaremore SquaredcorrelationcoefficientyiyyyˆyˆR2 2yy2yˆyˆ Example3.1and3.4:ModelofCollegecolˆGPA1.290.453hsGPA0.0094ACTn141,R20.176ACT:achievementtestscoreInterceptdoesn’tmakesensehsGPAandACTtogetherexinabout17.6%ofthevariationincolGPAmanyotherfactors,suchasfamilybackground,forcollege,contributetoastudent’scollegey1x1y1x12x2"kxkunointerceptSRF:yxx"x(3.30)1 2 kstilluseOLSmethod,butformularsareR21SSR/SST,SSRuˆ2(yxx...x 1 2i kR2canbeR2 Ifthereisnostrongprioriexpectationthat0=0,weshouldincludetheintercept,orelseOLSwillbebiasedreturnandtheBetacoefficient(CAPM).ER-rf=1(ERm-rf)+ER:expectedrateofreturnonsomerf: rateofERm:expectedrateofreturnonthemarket1:theBetacoefficient,ameasureofsystematicrisk,ER–rf:expectedriskpremiumonsecurityERm–rf:expectedmarketrisk3.33.3TheExpectedValueoftheOLS--parallelto2.5onSLRmodelAssumptionsofMLRMLR.1linearinModel:y=0+1x1+2x2+…+kxk+witharandomsampleofsizen,{(xi1,xi2,…,xik,yi)foreachobservationi(i=1,2,…,n)yi=0+1xi1+2xi2+…+kxik+Noneofthex’sisconstant,andtherearenoexactlinearrelationshipsamongthem01x1i2x2i...kxki0notallconstant's=0E(u|x1,x2,…xk)=implyingthatallx’sareThereasonsthatMLR.3doesnotanyofx’s.Theorem3.1:UnbiasedofOLSUnderMLR.1-4:E(ˆj) j0,1,...,meansthatthesamplingdistributionofOLSestimatorsiscenteredaroundthetrueparameter3.43.4VarianceoftheOLSVar(u|x1,x2,…,xk)=Var(y|x1,x2,…,xk)=GiventheGauss-MarkovAssumptionsMLR.1-5 sdˆSST1R21 j SSTjxijxjR2:theR2fromregressingxonallother R:x1= +2R:x1= +2x2+3x3+...+kxk+ 1 3 kR:x=+x+x+x+...+x+ 1 2 3 k-1k-v:errortermintheauxiliary’s:parametersintheauxiliaryAlargeVar(ˆ)meansalessprecisejlargerconfidenceintervalsandlessaccuratehypothesesNotknow2,becauseui’sareunobservable.useûiasestimatorofuiuˆiyiyˆiyiˆˆxi1ˆxi2...ˆ idegree dom(df):nk1n#of'Theorem3.3:unbiasedestimationof2UndertheGauss-MarkovAssumptionsMLR.1- j j SSTj1j12ˆandseˆarenotvalidestimatorofandsdˆ Varˆ j If2,var(ˆ)jmore“noise”intheequation(alarger2)makesitmoredifficulttoestimatethepartialeffectofanyxy,whichisreflectedinhighervariancesoftheOLSslopeestimators;Foragiveny,thereisonlyonewaytoreducetheerrorvariance:addmorex’stotheequation(takesomefactorsoutofu).;Thisisnotalwayspossible,norisitalways(2)TheTotalSampleVariationinxj,Ifthetotalvariationinxj,thatisSSTj,var(ˆ)jeverythingelsebeingequal,prefertohaveasmuchsamplevariationinxjaspossible;Giveny=0+1x1+2x2+...+kxk+Rj:R-squaredfromanauxiliaryregressionofxjonotherx’s,measuringtheproportionofthetotalvariationinxjthatcanbe inedbytheotherR2:x= +x+x+...+x+ 2 3 kR2:x2=0+1 +3x3+...+kxk+2R2:x=+x+x+x+...+x+ 1 2 3 k-1k-Anintercept0shouldbealwaysincludedintheauxiliaryregression.jxx...x 1 2 kj01X1i2X2i...kXkivixjandotherx'sarecorrelatedinthejProblemProblemofMulticollinearity:usuallyrefertocorrelationbetweentwoormoreofthex’s,nocleardefinition0R2jproblemonsampledataofx,butnotonpopulationIfR2,var(ˆ) 0R2 cons=0+1inc+2inc+inc2isnotanexactlinearfunctionof x3i=5x2iimperfectmulticollinearitybetweenX2andX3x*=x+v=5x wherev=2,0,7,9, 3i 2i rightway:collectmorewrongway: avariablethatbelongsinpopulationmodel,whichcanleadtovariousdegrees.Ifthenumberofx’sincreases,thepossibilityofmulticollinearityincreasestoo.ExpendituresonExpendituresonteachersalaries,instructionalmaterials,athletics,etc.maybehighlycorrelatedsincewealthierschoolstendtospendmoreeverything,andpoorerschoolsspendlessonThisleadstohighR2foreachoftheexpenditure ItisdifficulttoestimatetheeffectofanyparticularexpenditurecategoryonstudentperformanceSuchmulticollinearityproblemscanbemitigatedbycollectingmoredata,orsumthemtogethertostudythetheeffectoftotalexpenditureonstudentExample:y=0+1x1+2x2+3x3+Ifx2andx3arehighlycorrelated,butx1isuncorrelatedwithx2andx3 1ahighdegreeofcorrelationbetweencertainx’scanbeirrelevantastohowwellwecanestimateotherparametersinthemodel.modeleventhoughtheyhavenopartialeffectony(i.e.their’sare0).--underspecifying:excludeaorseveralx’sinthemodeleventhoughtheyhavepartialeffectony(i.e.their’sarenot0)SimpleExample:Truemodel:y=0+1x1+ Wrongmodel:y=0+1x1+2x2+u(2=0)'noeffectontheparameterestimates,andOLSestimatorsremainsunbiasedE(ˆ),E(ˆ),E(ˆ) ButhaveundesirableeffectonthevariancesofOLSVar(ˆ)2/[SST(1R2)],Var()2/ Ifx1andx2arecorrelated,Var()Var(ˆ IfIf2=0,x2doesnothaveapartialeffectony,thenincludingitinthemodelcanonlyexacerbatetheefficientestimatorof1truemodel:y=0+1x1+2x2+u(3.40)ˆ' regressx2onx1:x2 PRF:x201x1 1E 2Onlyif2=0or=0(xandxareuncorrelatedin 2 truetruemodel:yxx...x 1 2 kifexcludexk:y01x12x2...k1xk1 xk01x12x2...k1xk1 'E(j)jk j Onlyifk=0orj=0(xkandxjareuncorrelatedinsample),thenEjjomittedvariablebias:kjEjExample:Example:3.2&3.6ModelofHourlylog(ˆwage)0.5840.083educDataset:526workersinWAGE1.RAW,educ:yearsofeducationexper:yearsoflabormarketexperiencetenure:yearswiththecurrentSimpleExample:truemodel:y=0+1x1+2x2+u(3.40)ˆ' Var1 Var1 Ifx1andx2arecorrelated,VarVarˆ Ifx1andx2areuncorrelated,VarVarˆ If20,x2doeshaveapartialeffectony,thenexcludingitinthemodelresultsinabiasedOLSestimatorbutamoreefficientvarianceestimatorof1 AssumptionsMLR.1-5,theOLSestimatorjnjijlineariny:ˆ w (3.59fromunbiased:E(ˆ)jbest:efficient(smallestvariance)Var(ˆ)Var( E(ˆ)) var(ˆj)jjjjThecriticalquestioninGrantedthattheSRFisonlyanapproximationofthePRF,givenasample,canwedevisearuleoramethodthatwillmakethisapproximationas“close”Thatis,the'sinSRFshouldbeas“close”possibletotruevalues’sintherelevantPRFeventhoughwewillneverknowthe’sandPRF.--UnderMLR.1-5,theOLSestimatorsinSRFshouldbeas“close”aspossibletotruevalues’sintherelevantPRF,thatis,theywillmakethisapproximationas“close”aspossible.Ch.4:Multiple ysis:1 Ch.4:Multiple ysis:1OLSisBLUE.Inordertodostatisticaltest,weneedtoaddanotherMLR.6:uisindependentofx1,x2,…,xkanduisnormallydistributedwithzeromeanandvariance2:u~2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国单水龙头行业头部企业市场占有率及排名调研报告
- 2025-2030全球旋装式空气油分离器行业调研及趋势分析报告
- 2025年全球及中国全向堆高AGV行业头部企业市场占有率及排名调研报告
- 2025年全球及中国服装用粘胶长丝行业头部企业市场占有率及排名调研报告
- 2025-2030全球OA设备精密金属制品行业调研及趋势分析报告
- 2025年全球及中国IP67工业平板电脑行业头部企业市场占有率及排名调研报告
- 2025合作合同 展会活动合作协议
- 房屋代理买卖合同
- 基本建设年度借款合同
- 2025合同模板建设工程借款合同范本
- 包装品质彩盒外箱知识课件
- GB/T 9439-2023灰铸铁件
- 神经外科课件:神经外科急重症
- 颈复康腰痛宁产品知识课件
- 2024年低压电工证理论考试题库及答案
- 微电网市场调查研究报告
- 《民航服务沟通技巧》教案第14课民航服务人员上行沟通的技巧
- MT/T 538-1996煤钻杆
- 小学六年级语文阅读理解100篇(及答案)
- CB/T 467-1995法兰青铜闸阀
- 气功修炼十奥妙
评论
0/150
提交评论